Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Transcranial Direct Current Stimulation Of Frontal/Occipital Cortices Modulates Neural Correlates Of Cognition In Healthy Young Adults, Yasra Arif Dec 2022

Transcranial Direct Current Stimulation Of Frontal/Occipital Cortices Modulates Neural Correlates Of Cognition In Healthy Young Adults, Yasra Arif

Theses & Dissertations

An exponential rise in the use of transcranial direct current stimulation (tDCS) to modify the human brain and behavior has been observed over the last 20 years, with studies often yielding mixed outcomes. Such heterogeneity is partially attributed to the lack of a concise understanding of the underlying mechanisms. Though considered to exert modulatory effects by changing neuronal membrane polarization and synaptic efficacy, the interactive effects of offline tDCS and the neural underpinnings of cognition, both at the regional and network-level, are yet to be fully understood. Using High-Definition tDCS (HD-tDCS), Magnetoencephalography (MEG), a range of well-established cognitive paradigms, and …


Gut Commensals Modulate Siv/Shiv Pathogenesis And Therapeutics, Samuel Johnson May 2022

Gut Commensals Modulate Siv/Shiv Pathogenesis And Therapeutics, Samuel Johnson

Theses & Dissertations

Despite significant advancements in combination antiretroviral therapy (cART), ongoing inflammation in the brain and gut remain two of the most significant hurdles in the health of people living with human immunodeficiency virus (HIV). Additionally, a viral reservoir in each compartment inhibits cure efforts by allowing rapid viral rebound following cART interruption. Emerging understanding of the gut-brain axis (GBA) implicates each compartment in the modulation of the other in a complex bi-directional interaction mediated by vagus innervation, circulating lymphocytes, and microbiome composition and biproducts. Using multiple models of the simian (and simian-human) immunodeficiency virus (SIV/SHIV) and therapeutic intervention, I present how …


Ecdysoneless Overexpression Drives Mammary Tumorigenesis Through Upregulation Of C-Myc And Glucose Metabolism, Bhopal C. Mohapatra, Sameer Mirza, Aditya Bele, Channabasavaiah B. Gurumurthy, Mohsin Raza, Irfana Saleem, Matthew D. Storck, Aniruddha Sarkar, Sai Sundeep Kollala, Surendra K. Shukla, Siddesh Southekal, Kay-Uwe Wagner, Fang Qiu, Subodh M. Lele, Mansour A. Alsaleem, Emad A. Rakha, Chittibabu Guda, Pankaj K. Singh, Robert D. Cardiff, Hamid Band, Vimla Band Jan 2022

Ecdysoneless Overexpression Drives Mammary Tumorigenesis Through Upregulation Of C-Myc And Glucose Metabolism, Bhopal C. Mohapatra, Sameer Mirza, Aditya Bele, Channabasavaiah B. Gurumurthy, Mohsin Raza, Irfana Saleem, Matthew D. Storck, Aniruddha Sarkar, Sai Sundeep Kollala, Surendra K. Shukla, Siddesh Southekal, Kay-Uwe Wagner, Fang Qiu, Subodh M. Lele, Mansour A. Alsaleem, Emad A. Rakha, Chittibabu Guda, Pankaj K. Singh, Robert D. Cardiff, Hamid Band, Vimla Band

Journal Articles: Pharmacology & Experimental Neuroscience

Ecdysoneless (ECD) protein is essential for embryogenesis, cell-cycle progression, and cellular stress mitigation with an emerging role in mRNA biogenesis. We have previously shown that ECD protein as well as its mRNA are overexpressed in breast cancer and ECD overexpression predicts shorter survival in patients with breast cancer. However, the genetic evidence for an oncogenic role of ECD has not been established. Here, we generated transgenic mice with mammary epithelium-targeted overexpression of an inducible human ECD transgene (ECDTg). Significantly, ECDTg mice develop mammary hyperplasia, preneoplastic lesions, and heterogeneous tumors with occasional lung metastasis. ECDTg tumors exhibit epithelial to mesenchymal transition …


Crispr-Krispr: A Method To Identify On-Target And Random Insertion Of Donor Dnas And Their Characterization In Knock-In Mice, Masayuki Tanaka, Keiko Yokoyama, Hideki Hayashi, Sanae Isaki, Kanae Kitatani, Ting Wang, Hisako Kawata, Hideyuki Matsuzawa, Channabasavaiah B. Gurumurthy, Hiromi Miura, Masato Ohtsuka Jan 2022

Crispr-Krispr: A Method To Identify On-Target And Random Insertion Of Donor Dnas And Their Characterization In Knock-In Mice, Masayuki Tanaka, Keiko Yokoyama, Hideki Hayashi, Sanae Isaki, Kanae Kitatani, Ting Wang, Hisako Kawata, Hideyuki Matsuzawa, Channabasavaiah B. Gurumurthy, Hiromi Miura, Masato Ohtsuka

Journal Articles: Pharmacology & Experimental Neuroscience

CRISPR tools can generate knockout and knock-in animal models easily, but the models can contain off-target genomic lesions or random insertions of donor DNAs. Simpler methods to identify off-target lesions and random insertions, using tail or earpiece DNA, are unavailable. We develop CRISPR-KRISPR (CRISPR-Knock-ins and Random Inserts Searching PRotocol), a method to identify both off-target lesions and random insertions. CRISPR-KRISPR uses as little as 3.4 μg of genomic DNA; thus, it can be easily incorporated as an additional step to genotype founder animals for further breeding.