Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology

University of Kentucky

Sanders-Brown Center on Aging Faculty Publications

Alzheimer’s disease

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller Oct 2021

Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller

Sanders-Brown Center on Aging Faculty Publications

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential to AD research, highly correlated input features can significantly decrease machine learning model generalizability and performance. Additionally, redundant features unnecessarily increase computational time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine the …


Astrocyte Activation And The Calcineurin/Nfat Pathway In Cerebrovascular Disease, Susan D. Kraner, Christopher M. Norris Sep 2018

Astrocyte Activation And The Calcineurin/Nfat Pathway In Cerebrovascular Disease, Susan D. Kraner, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase with high abundance in nervous tissue. Though enriched in neurons, CN can become strongly induced in subsets of activated astrocytes under different pathological conditions where it interacts extensively with the nuclear factor of activated T cells (NFATs). Recent work has shown that regions of small vessel damage are associated with the upregulation of a proteolized, highly active form of CN in nearby astrocytes, suggesting a link between the CN/NFAT pathway and chronic cerebrovascular disease. In this Mini Review article, we discuss CN/NFAT signaling properties in the context of vascular disease and …


Ca2+, Astrocyte Activation And Calcineurin/Nfat Signaling In Age-Related Neurodegenerative Diseases, Pradoldej Sompol, Christopher M. Norris Jul 2018

Ca2+, Astrocyte Activation And Calcineurin/Nfat Signaling In Age-Related Neurodegenerative Diseases, Pradoldej Sompol, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Mounting evidence supports a fundamental role for Ca2+ dysregulation in astrocyte activation. Though the activated astrocyte phenotype is complex, cell-type targeting approaches have revealed a number of detrimental roles of activated astrocytes involving neuroinflammation, release of synaptotoxic factors and loss of glutamate regulation. Work from our lab and others has suggested that the Ca2+/calmodulin dependent protein phosphatase, calcineurin (CN), provides a critical link between Ca2+ dysregulation and the activated astrocyte phenotype. A proteolyzed, hyperactivated form of CN appears at high levels in activated astrocytes in both human tissue and rodent tissue around regions of amyloid and …


Preventing P-Gp Ubiquitination Lowers Aβ Brain Levels In An Alzheimer's Disease Mouse Model, Anika M. S. Hartz, Yu Zhong, Andrew N. Shen, Erin L. Abner, Björn Bauer Jun 2018

Preventing P-Gp Ubiquitination Lowers Aβ Brain Levels In An Alzheimer's Disease Mouse Model, Anika M. S. Hartz, Yu Zhong, Andrew N. Shen, Erin L. Abner, Björn Bauer

Sanders-Brown Center on Aging Faculty Publications

One characteristic of Alzheimer’s disease (AD) is excessive accumulation of amyloid-β (Aβ) in the brain. Aβ brain accumulation is, in part, due to a reduction in Aβ clearance from the brain across the blood-brain barrier. One key element that contributes to Ab brain clearance is P-glycoprotein (P-gp) that transports Aβ from brain to blood. In AD, P-gp protein expression and transport activity levels are significantly reduced, which impairs Aβ brain clearance. The mechanism responsible for reduced P-gp expression and activity levels is poorly understood. We recently demonstrated that Aβ40 triggers P-gp degradation through the ubiquitin-proteasome pathway. Consistent with these …


Retention Of Normal Glia Function By An Isoform-Selective Protein Kinase Inhibitor Drug Candidate That Modulates Cytokine Production And Cognitive Outcomes, Zhengqiu Zhou, Adam D. Bachstetter, Claudia B. Späni, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik Apr 2017

Retention Of Normal Glia Function By An Isoform-Selective Protein Kinase Inhibitor Drug Candidate That Modulates Cytokine Production And Cognitive Outcomes, Zhengqiu Zhou, Adam D. Bachstetter, Claudia B. Späni, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

Background: Brain p38α mitogen-activated protein kinase (MAPK), a potential therapeutic target for cognitive dysfunction based on the neuroinflammation-synaptic dysfunction cycle of pathophysiology progression, offers an innovative pharmacological strategy via inhibiting the same activated target in both glia and neurons, thereby enhancing the possibility for efficacy. The highly selective, brain-penetrant p38αMAPK inhibitor MW150 attenuates cognitive dysfunction in two distinct Alzheimer's disease (AD)-relevant models and avoids the problems encountered with previous mixed-kinase inhibitor drug candidates. Therefore, it is essential that the glial effects of this CNS-active kinase inhibitor be addressed in order to anticipate future use in clinical investigations.

Methods: …