Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology

University of Kentucky

Pharmacology and Nutritional Sciences Faculty Publications

Mice

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo Feb 2018

Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during the pregnancy and is the leading cause of mental retardation. Ethanol exposure during the development results in the loss of neurons in the developing brain, which may underlie many neurobehavioral deficits associated with FASD. It is important to understand the mechanisms underlying ethanol-induced neuronal loss and develop appropriate therapeutic strategies. One of the potential mechanisms involves neuroimmune activation. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that ethanol induced a wide-spread neuroapoptosis, microglial activation, and neuroinflammation in C57BL/6 mice. Minocycline is an antibiotic that inhibits …


Transcriptional Signatures Of Brain Aging And Alzheimer's Disease: What Are Our Rodent Models Telling Us?, Kendra E. Hargis, Eric M. Blalock Mar 2017

Transcriptional Signatures Of Brain Aging And Alzheimer's Disease: What Are Our Rodent Models Telling Us?, Kendra E. Hargis, Eric M. Blalock

Pharmacology and Nutritional Sciences Faculty Publications

Aging is the biggest risk factor for idiopathic Alzheimer’s disease (AD). Recently, the National Institutes of Health released AD research recommendations that include: appreciating normal brain aging, expanding data-driven research, using open-access resources, and evaluating experimental reproducibility. Transcriptome data sets for aging and AD in humans and animal models are available in NIH-curated, publically accessible databases. However, little work has been done to test for concordance among those molecular signatures. Here, we test the hypothesis that brain transcriptional profiles from animal models recapitulate those observed in the human condition. Raw transcriptional profile data from twenty-nine studies were analyzed to produce …