Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanomedicine

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 135

Full-Text Articles in Medicine and Health Sciences

Generation And Characterization Of Lipid Nanoparticles For Dna Plasmid Delivery And Pharmacological Characterization, Sahana John May 2024

Generation And Characterization Of Lipid Nanoparticles For Dna Plasmid Delivery And Pharmacological Characterization, Sahana John

Biotechnology Theses

Lipid nanoparticles (LNPs) have shown promise for delivering nucleic acids like DNA plasmids, but packaging large plasmids remains challenging. The findings and experimental work detailed in this thesis are geared towards providing a proof of concept and providing preliminary confirmation of the guiding principle.

We synthesized LNPs containing cationic lipids (D-Lin-MC3) to encapsulate the large pLVX-ZsGreen and psiCHECK (luciferase) plasmids (~10-14kb) using a microfluidic system. Characterization included size, charge, morphology, plasmid encapsulation efficiency and in vitro/in vivo studies. The LNP-pDNA particles were ~100nm in size with high encapsulation efficiency. The LNPs efficiently transfected 293T cells with low cytotoxicity, enabling strong …


Quantum Dots' Toxicity: A Multi-Level Investigation On The Impact Of Quantum Dots On The Actin Cytoskeleton, Nhi Le Jan 2024

Quantum Dots' Toxicity: A Multi-Level Investigation On The Impact Of Quantum Dots On The Actin Cytoskeleton, Nhi Le

MSU Graduate Theses

Quantum dots (QDs) are fluorescence nanomaterials with unique optical and physical properties. As such, they are highly sought after for their potential use in several biomedical and industrial applications. Despite their vast potential, recent studies have suggested that quantum dots are toxic to cells. Yet, the mechanism of quantum dots’ toxicity remains unclear. As such, my thesis aims to comprehensively examine the mechanism of quantum dots’ toxicity, emphasizing how quantum dots disrupt the actin cytoskeleton. In this study, I used RNA sequencing and mass spectrometry to investigate the influence of CdSe/ZnS QDs on the transcriptomic proteomic level of Saccharomyces cerevisiae …


Levofloxacin Incorporated Extracellular Matrix Nanoparticles For Pulmonary Cystic Fibrosis Infections, Raahi Patel Jan 2024

Levofloxacin Incorporated Extracellular Matrix Nanoparticles For Pulmonary Cystic Fibrosis Infections, Raahi Patel

Theses and Dissertations

Cystic fibrosis (CF) is a progressive genetic disorder that affects around 40,000 people in the United States. CF is characterized by a mutation in the CFTR protein that causes dysregulated ion transport across epithelial cells, producing viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in CF patients that are resistant to antibiotics. One antibiotic approved to treat these infections is levofloxacin (LVX) that functions to inhibit bacterial replication, but can be further developed into tailorable particles. Nanoparticles are an emerging inhaled …


Transition Metal Catalyst (Tmc)-Embedded Bioorthogonal Nanozymes For Anticancer Therapeutics, Xianzhi Zhang Aug 2023

Transition Metal Catalyst (Tmc)-Embedded Bioorthogonal Nanozymes For Anticancer Therapeutics, Xianzhi Zhang

Doctoral Dissertations

Bioorthogonal chemistry offers versatile strategies for monitoring and modulating biomolecules in their native environments through abiotic chemical reactions. Bioorthogonal catalysis via transition metal catalysts (TMCs) provides the controlled activation of anticancer therapeutics, which mimics the enzymatic amplifications. However, the direct use of TMCs in living systems faces challenges such as instability, poor solubility, and low biocompatibility. Engineering the structure of TMCs can partially solve the problems, but the rapid clearance of small molecules hurdles the in vivo applications. Therefore, embedding TMCs in/onto nanomaterials to obtain bioorthogonal nanozymes enhances stability, solubility, biocompatibility, and the presence of the catalysts in biological environments …


Self-Assembled Ternary Polypeptide Nanoparticles With Improved Biostability For Drug Delivery In Cancer Therapy, Preye Mike Agbana Jan 2023

Self-Assembled Ternary Polypeptide Nanoparticles With Improved Biostability For Drug Delivery In Cancer Therapy, Preye Mike Agbana

Theses and Dissertations--Pharmacy

Cancer remains a real and present threat to global health. In the United States, according to cancer statistics, almost 40% of people will be diagnosed with cancer at some point in their lifetime. Conventional chemotherapy has become the mainstay for cancer treatment option. However, chemotherapeutic agents are plagued with problems such as poor aqueous solubility, chemical degradation, Bio instability, and off-site toxicity due to non-specificity. New drug modalities are needed to tackle the ever-growing burden on cancer. In recent times, the promise of nanotechnology has aided to develop drug delivery vehicles to facilitate the administration of potent chemotherapeutics. Nanoformulations such …


Investigation Of Folate-Poly(Glutamic Acid)/Polyethylenimine/Dna Complexes For In Vitro Gene Delivery, Caleb Akers Jan 2023

Investigation Of Folate-Poly(Glutamic Acid)/Polyethylenimine/Dna Complexes For In Vitro Gene Delivery, Caleb Akers

Theses and Dissertations--Pharmacy

Gene therapy is currently being studied as a treatment for a variety of indications, including cancer, infectious disease, and cardiovascular diseases, among others. While many of the early treatments in the field involved the use of viral delivery methods, various safety, ethical, and financial concerns limit the potential uses of this methodology. As such, more recent research has focused on developing non-viral delivery platforms to alleviate some of the issues inherent in viral delivery. Recently, the release of the COVID-19 vaccines from Pfizer and Moderna represents a promising use of non-viral delivery as both utilized a lipid-based delivery vector.

Despite …


Effect Of Decorating Super Paramagnetic Iron Oxide Nanoparticles With Silver Nanoparticles On Their Magneto-Photo Thermal Heating Efficiency, Anthony Joseph Afful Jan 2023

Effect Of Decorating Super Paramagnetic Iron Oxide Nanoparticles With Silver Nanoparticles On Their Magneto-Photo Thermal Heating Efficiency, Anthony Joseph Afful

All Graduate Theses, Dissertations, and Other Capstone Projects

Cancer treatment is rather dangerous to the body, often involving many secondary effects, including nausea, hair loss, and weight fluctuations. The search for non-invasive, highly efficient, and targetable treatments ameliorates these issues. Super paramagnetic iron oxide nanoparticles (SPIONS) have been used for other medical purposes such as magnetic resonance imaging contrast agent and is being extensively studied as a potential candidate for many cancer therapeutic and diagnostic approaches due to its biocompatibility and superior magnetic properties. When subjected to an external alternating magnetic field SPIONS generate heat mainly due to the friction of the SPIONS against the fluid it is …


The Impact Of Pegylation On Cellular Uptake And In Vivo Biodistribution Of Gold Nanoparticle Mri Contrast Agents., Nagwa El-Baz Dec 2022

The Impact Of Pegylation On Cellular Uptake And In Vivo Biodistribution Of Gold Nanoparticle Mri Contrast Agents., Nagwa El-Baz

Electronic Theses and Dissertations

Gold nanoparticles (GNPs) have become a pivotal platform for the delivery of pharmaceutical and diagnostic agents as well as for general therapeutic purposes. Despite their potential for use in biomedicine, their interaction with serum proteins is crucial as it could change their biological profile due to the formation of a protein corona, which can affect their delivery to target tissues in the body. Grafting the GNPs with polyethylene glycol (PEG) is widely used in research to decrease opsonization of the particles by serum proteins and decrease the uptake by the reticuloendothelial system. Here in this dissertation, we have developed a …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward Sep 2022

Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward

Doctoral Dissertations

Molecular motors, such as myosin, have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction in these motors is a root cause of many pathologies necessitating the application of intrinsic control over molecular motor function. We hypothesized that altering the myosin’s energy substrate via minor positional changes to the triphosphate portion of the molecule will allow us to control the protein and affect its in vitro function. We utilized positional isomers of a synthetic non-nucleoside triphosphate, azobenzene triphosphate, and assessed whether myosin’s force- and motion-generating capacity could …


Quality By Design Based Optimization Of Anti-Inflammatory Nanoemulgels For Local Treatment Of Burn Wounds, Leah Dickey Aug 2022

Quality By Design Based Optimization Of Anti-Inflammatory Nanoemulgels For Local Treatment Of Burn Wounds, Leah Dickey

Electronic Theses and Dissertations

Burns are some of the most traumatizing and damaging skin injuries, with the potential of causing extensive internal damage that increases the risk of chronic wound development. Oral and topical analgesics in combination with antibiotics can provide temporary relief and improve wound healing progress for both mild and severe burns. However, recurrent systemic exposure to pain relievers and antibiotics has been associated with adverse side effects including nausea, drowsiness, abdominal pain, etc., and increased risk of new infections or even ulcers. Local and targeted drug delivery systems, such as nanomedicine, have gained attention as potentially more effective alternatives to improve …


Biomimetic And Medical Applications Of Hollow Nanoscale Structures, Justin Fang Jun 2022

Biomimetic And Medical Applications Of Hollow Nanoscale Structures, Justin Fang

Dissertations, Theses, and Capstone Projects

Materials whose structure incorporates nanoscale void spaces have multiple possible uses, whether in a bulk form or as individual particles, due to the combination of high surface area ratios and nanoscale material properties. This thesis will explore a few of these possibilities, concentrating on potential biomimetic and biomedical applications, for two materials: metal- organic frameworks and superparamagnetic iron oxide nanocages.

Metal-organic frameworks consist of metal ions such as Cu2+ which have highly porous lattice structures allowing them to absorb and release guest molecules such as peptides like diphenylalanine; this stored chemical energy can be turned into kinetic energy and used …


Isolation And Characterization Of Α-Hcd7 Scfv Expressing Exosomes And Synthesis Of Hybrid Exosome-Liposome For Analyses, Sahil Patel May 2022

Isolation And Characterization Of Α-Hcd7 Scfv Expressing Exosomes And Synthesis Of Hybrid Exosome-Liposome For Analyses, Sahil Patel

Biotechnology Theses

The goal of this thesis project is to isolate and characterize exosomes that express anti-human CD7 (α-hCD7) single chain variable fragment (scFv), which will be further utilized for T celltargeted gene editing. To reach this goal, exosomes from HEK 293 cells and Jurkat cells were isolated and characterized with different methodologies. To obtain α-hCD7 scFv-expressing exosomes, the HEK 293 cells were subjected to transfection of custom-plasmid pDisplay-αhCD7 scFv, and the expression of α-hCD7 scFv on the HEK 293-derived exosomes were then confirmed by immunogold staining, western blotting, and flow cytometry. To transfect 293 cells, calcium phosphate transfection was utilized, and …


Lc-Ms Identification Of Serum Proteins Adsorbed Onto Ionic Liquid-Coated Nanoparticles, Anh M. Hoang May 2022

Lc-Ms Identification Of Serum Proteins Adsorbed Onto Ionic Liquid-Coated Nanoparticles, Anh M. Hoang

Honors Theses

Nanocarriers are promising candidates for drug delivery due to their size and tunable surface characteristics. However, when they are intravenously injected, few particles make it to their designated location. This is because upon entering the bloodstream, the serum in the blood, which is rich with a diversity of proteins, adsorbs onto the particles’ surfaces forming a protein corona. Many of the attached proteins trigger the mobile immune system and are removed by macrophages, and many particles are then filtered out by the liver and kidneys. Ionic Liquids (ILs), which consist of asymmetric, bulky components that are liquid


Polymeric Nanocarriers For Delivery Of Small Molecules Inhibiting Tubulin Polymerization For The Treatment Of Pancreatic Cancer And Lung Metastatic Melanoma, Rajan Sharma Bhattarai May 2022

Polymeric Nanocarriers For Delivery Of Small Molecules Inhibiting Tubulin Polymerization For The Treatment Of Pancreatic Cancer And Lung Metastatic Melanoma, Rajan Sharma Bhattarai

Theses & Dissertations

The aim of this thesis is to develop delivery systems for the novel small molecules which inhibit tubulin polymerization. One of the small molecules was modified to lipid conjugate to increase the lipophilicity of the molecules which in turn drastically improved the drug loading in amphiphilic polymeric system. The second molecule was conjugated to the amphiphilic polymeric backbone with pH sensitive Schiff’s linker for the tumor site specific delivery in lung metastatic melanoma model.

Chapter 1 discusses the tumor microenvironment for the solid tumor especially focusing on Pancreatic Ductal Adenocarcinoma (PDAC). Further the drug delivery system currently researched for addressing …


The Use Of Spectral Imaging To Reveal Inorganics And Organics Identity In The Biological Samples, Qamar Alshammari May 2022

The Use Of Spectral Imaging To Reveal Inorganics And Organics Identity In The Biological Samples, Qamar Alshammari

Pharmaceutical Sciences (PhD) Dissertations

The wavelength is used to identify the exact location and quantify the number of molecules in the spectral imaging system. It aids in identifying materials and studying their quantities by examining how they interact with light. A traditional spectrometer provides spectrum information of chemical compounds, while standard imaging provides the intensity at each pixel of the image. Spectral imaging (SI) combines these two aspects by equipping intensity and spectral data for each pixel. In biomedical research, it is important to assess the inorganics/organics molecules to understand drug activity, cellular toxicity, and distribution. Using the microscopy technique, we found for the …


Surface Engineering For Controlled Growth And Deposition Of Nanomaterials - Assembly And Design At The Nano-Microscale, David Fox Jan 2022

Surface Engineering For Controlled Growth And Deposition Of Nanomaterials - Assembly And Design At The Nano-Microscale, David Fox

Electronic Theses and Dissertations, 2020-

Materials with nanoscale dimensions offer several important benefits over bulk materials (e.g. increased surface area, low-cost, deviation from bulk properties, etc.). Such materials are critical components for next-generation energy storage materials, optoelectronic devices, and catalyst systems. However, these materials are often processed in liquid media, and their diminutive structures are fragile in the presence of capillary forces. As such, preparing uniform and stable nanomaterial coatings is a significant challenge. Herein, we discuss an approach where the substrate itself is factored into the assembly and growth of these materials. First, nanoporous surfaces were utilized to achieve a uniform deposition of one-dimensional …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …


Exploiting Modulation Of The Blood-Brain And Blood-Tumor Barrier Permeability By Translational Focused Ultrasound For Therapeutic Delivery To Cns Metastases, Tasneem A. Arsiwala Jan 2022

Exploiting Modulation Of The Blood-Brain And Blood-Tumor Barrier Permeability By Translational Focused Ultrasound For Therapeutic Delivery To Cns Metastases, Tasneem A. Arsiwala

Graduate Theses, Dissertations, and Problem Reports

Transcranial low-intensity focused ultrasound is a unique technology to modulate the integrity of tight endothelial junctions and transiently increase BBB/BTB permeability to enhance therapeutic delivery. Despite promising early studies, present literature lacks agreement on key experimental conditions, which restricts our knowledge and the technique's widespread translation. This dissertation first provides a critical review of the current gaps in knowledge regarding the universal use of LiFUS in preclinical and clinical use. We then identify key parameters for translational and predictable opening of the BBB using a 3T MRI coupled with a clinical device. Our investigation highlights that passive permeability of the …


Intracellular Trafficking And Distribution Of Cd And Inp Quantum Dots In Hela And Ml-1 Thyroid Cancer Cells, Min Zhang Jan 2022

Intracellular Trafficking And Distribution Of Cd And Inp Quantum Dots In Hela And Ml-1 Thyroid Cancer Cells, Min Zhang

MSU Graduate Theses

The study of the interaction of engineered nanoparticles, including quantum dots (QDs), with cellular constituents and the kinetics of their localization and transport, has provided new insights into their biological consequences in cancers and for the development of effective cancer therapies. The present study aims to elucidate the toxicity and intracellular transport kinetics of CdSe/ZnS and InP/ZnS QDs in late-stage ML-1 thyroid cancer using well-tested HeLa cells as a control. The XTT viability assay showed that ML-1 cells, and non-cancerous mouse fibroblast cells, exhibit no viability defect in response to these QDs, whereas HeLa cell viability decreases. These results suggest …


Succinylated Polyethylenimine Gene Delivery Agents For Enhanced Transfection Efficacy, Md. Nasir Uddin Jan 2022

Succinylated Polyethylenimine Gene Delivery Agents For Enhanced Transfection Efficacy, Md. Nasir Uddin

Theses and Dissertations--Chemistry

Gene therapy aims to treat patients by altering or controlling gene expression. Today, most clinical approaches are viral-based due to their inherent gene delivery activity. However, there is still a significant interest in nonviral alternatives for gene delivery, particularly synthetic lipids and polymers, that do not suffer the immunogenicity, high cost, or mutagenesis concerns of viral vectors. Polymeric vectors are of particular interest due to the ability to further tune the polymer properties through the incorporation of additional functional units such as targeting ligands or shielding domains. Polyethylenimine (PEI), a highly cationic polymer, is often considered a benchmark for polymer-based …


Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki Dec 2021

Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki

Graduate Theses and Dissertations

Developing methodologies to control the architecture of nanoparticles (NPs) at the atomic level prevents their inhomogeneity and leads to a variety of expected functions. Rationally designed nanoparticles can either be programmed or crystallized structures into pre-determined structures achieving tunable particle pore size and physiochemistry. In this dissertation, two broad classes of multifunctional nanoparticles are developed, metal-organic frameworks and DNA-NP aggregates.

Metal-organic frameworks are a novel class of highly porous crystalline materials built from organic linkers and metal cluster-based secondary building units. However, applications in bioremediation have not been developed very well especially in applications regarding drug delivery systems (DDS). The …


Novel Peptide Biomaterials For Enhanced Delivery Of Sirna Cargo For Treatment Of Ovarian Cancer, Timothy Samec Dec 2021

Novel Peptide Biomaterials For Enhanced Delivery Of Sirna Cargo For Treatment Of Ovarian Cancer, Timothy Samec

All Dissertations

Ovarian cancer is the 7th leading cause of cancer related death and the 5th most commonly diagnosed cancer among women. Primarily diagnosed in stage III or stage IV, aggressive treatment is necessary and involves surgical debulking and administration of systemic chemotherapeutics. Unfortunately, these strategies fall short in effectively treating ovarian cancer and many patients experience local disease recurrence, development of multidrug resistant tumors, regional or distant metastatic events, or a combination of the three. As such, there is a significant need for additional treatment options and methods of delivery to improve therapeutic efficacy and disease survivability.

RNA interference …


Polymer-Based Strategies For Therapeutic Delivery To Bacterial Biofilms, Cheng-Hsuan Li Oct 2021

Polymer-Based Strategies For Therapeutic Delivery To Bacterial Biofilms, Cheng-Hsuan Li

Doctoral Dissertations

Bacterial infections are emerging threat to public health. Antibiotics once provided front-line treatments to bacterial infections; however, bacteria adapted to resist antibiotics through drug resistance mechanisms and biofilm formation. In this dissertation, I describe polymer-based strategies for therapeutic delivery as treatments of bacterial biofilm infections. Initially, I developed a functional polymer for delivering hydrophobic carvacrol (the primary constituent of oregano oil) to the bacterial biofilms. This strategy incorporates a cross-linking strategy to fabricate a robust yet biodegradable nanoemulsion, improving antimicrobial activity of carvacrol and overcoming antimicrobial resistance development. Next, I demonstrated that this functional polymer-based emulsion platform provides a general …


Synthesis, Characterization And Applications Of Peptide-Coated Nanoparticles, Mina Sadat Poursharifi Sep 2021

Synthesis, Characterization And Applications Of Peptide-Coated Nanoparticles, Mina Sadat Poursharifi

Dissertations, Theses, and Capstone Projects

Ovarian Cancer (OC) is the most lethal female malignancy worldwide, mainly due to its high recurrence rate and poor diagnosis. Most patients present with late stage of the disease, and less than 25% of patients survive the five years mark. Nanotherapy provides significant and unique benefits for drug efficacy, as nanoparticles (NPs) can increase the solubility, bioavailability, and permeability of many potent drugs. Poly(lactic-co-glycolic acid) (PLGA) is one of the most successful biodegradable polymers used in NPs formulations, mainly due to its biocompatibility and biodegradability. Polyethylene glycol (PEG) is one of the most commonly used moieties to prolong the NPs …


Enhanced Platinum (Ii) Drug Delivery For Anti-Cancer Therapy, Marek T. Wlodarczyk Sep 2021

Enhanced Platinum (Ii) Drug Delivery For Anti-Cancer Therapy, Marek T. Wlodarczyk

Dissertations, Theses, and Capstone Projects

Over the years, anti-cancer therapies have improved the overall survival rate of patients. Nevertheless, the traditional free drug therapies still suffer from side effects and systemic toxicity, resulting in low drug dosages in the clinic. This often leads to suboptimal drug concentrations reaching cancer cells, contributing to treatment failure and drug resistance. Among available anti-cancer therapies, metallodrugs are of great interest. Platinum (II)-based agents are highly potent and are used to treat many cancers, including ovarian cancer (OC). Cisplatin (cis-diaminedichloroplatinum (II)) is the first Food and Drug Administration (FDA)-approved metallodrug for treatment of solid tumors, and its mechanism …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Development Of Once-A-Year Injectable Formulation Of Cabotegravir For Prevention And Treatment Of Hiv Infection, Tanmay Abhay Kulkarni Aug 2021

Development Of Once-A-Year Injectable Formulation Of Cabotegravir For Prevention And Treatment Of Hiv Infection, Tanmay Abhay Kulkarni

Theses & Dissertations

Long-acting cabotegravir (CAB) extends antiretroviral drug (ARV) dosing to monthly for maintenance of human immunodeficiency virus type one (HIV-1) suppression and to every other month for prevention of viral transmission. However, injection dose volumes, site reactions, and clinical oversights that are required remain obstacles towards broad usage. To meet these needs, surfactant coated hydrophobic and lipophilic CAB prodrugs were created with controlled prodrug dissolution, hydrolysis and drug tissue penetration. To such ends, fatty acid ester CAB nanocrystal prodrugs with 14, 18, and 22 added carbon chains were synthesized then nanoformulated as NMCAB, NM2CAB, and NM3CAB. These nanocrystal formulations were tested …


Complexation Of Glycoalkaloid Α- Tomatine With Sterols And Its Potential Application As An Anti-Cancer Drug, Bishal Nepal Jul 2021

Complexation Of Glycoalkaloid Α- Tomatine With Sterols And Its Potential Application As An Anti-Cancer Drug, Bishal Nepal

Dissertations

Glycoalkaloids (GAs) are secondary metabolites found mostly in higher plant species and some marine invertebrates. They are known to form complexes with 3β-hydroxy sterols such as cholesterol causing membrane disruption. So far the visual evidence showcasing the complexes formed between glycoalkaloids and sterols has been mainly restricted to some earlier studies using Brewster angle microscopy. This study aimed to develop a method for topographic and morphological analysis of sterol-glycoalkaloid complexes. Langmuir-Blodgett (LB) transfer of monolayers comprising of glycoalkaloid tomatine, sterols, and lipids in varying molar ratios onto mica followed by AFM examination was performed. The AFM method used required minimal …


Formulation Of Coffee Extract As Polymeric Nanoparticles And Studying Their Potential Biological Activities, Nouran Sharaf Jun 2021

Formulation Of Coffee Extract As Polymeric Nanoparticles And Studying Their Potential Biological Activities, Nouran Sharaf

Theses and Dissertations

Coffee extract was prepared and optimized (by solvent extraction) and subsequently entrapped into PLGA nanoparticles using single emulsion-solvent evaporation method (using Design Expert software). Dynamic Light Scattering, Scanning Electron Microscope, Fourier Transform-Infrared Spectroscopy and Folin Ciocalteau assay were used to characterize the NPs and to aid in selecting the optimum formulation conditions. The optimized NPs were in-vitro evaluated for their antimicrobial (by agar-well diffusion method), antioxidant (by DPPH assay) and anticancer (by MTT assay) activities. Finally, the release rate study was conducted for the NP sample showing the highly promising results.

The succeeded NP sample, in terms of the most …