Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medicine and Health Sciences

Developing A Biocatalytic Toolbox To Aid In Understanding Nucleoside Antibiotics, Jasmine Brianna Woods Jan 2023

Developing A Biocatalytic Toolbox To Aid In Understanding Nucleoside Antibiotics, Jasmine Brianna Woods

Theses and Dissertations--Pharmacy

Antibiotic resistance happens when bacteria develop the ability to survive medications that normally terminate them. Instead, these super germs are able to survive in the body and produce a community of antibiotic resistance germs which can cause human fatalities. It is important to discover and develop new compounds and molecules that will improve this clinical obstacle. This research focused on analyzing the biosynthesis that incorporates distinctive chemical characteristic of various nucleoside antibiotics, ß-hydroxy amino acids and α-methyl-amino acids. ß-hydroxy amino acids and α-methyl-amino acids are considered an important class of industrially useful compounds, particularly for pharmaceutical development, and are found …


Abc Transporters In Glioblastoma: Anticancer Drug Transport And Transporter Regulation At The Blood-Brain Barrier, Julia A. Schulz Jan 2021

Abc Transporters In Glioblastoma: Anticancer Drug Transport And Transporter Regulation At The Blood-Brain Barrier, Julia A. Schulz

Theses and Dissertations--Pharmacy

Glioblastoma is one of the deadliest cancers, with a median survival of only one year. Even after aggressive treatment consisting of surgical resection, radiation, and chemotherapy, most glioblastoma patients suffer from tumor recurrence within 6-9 months. One reason for treatment failure of anticancer drugs is the blood-brain barrier that protects the brain by impeding xenobiotic uptake from the blood. To this end, efflux transporters at the human blood-brain barrier, such as P-glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2), prevent many compounds, including anticancer drugs, from entering the brain. Thus far, approaches to deliver anticancer drugs across the blood-brain barrier …


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


Elucidating Proteasome Catalytic Subunit Composition And Its Role In Proteasome Inhibitor Resistance, Kimberly C. Carmony Jan 2016

Elucidating Proteasome Catalytic Subunit Composition And Its Role In Proteasome Inhibitor Resistance, Kimberly C. Carmony

Theses and Dissertations--Pharmacy

Proteasome inhibitors bortezomib and carfilzomib are FDA-approved anticancer agents that have contributed to significant improvements in treatment outcomes. However, the eventual onset of acquired resistance continues to limit their clinical utility, yet a clear consensus regarding the underlying mechanisms has not been reached.

Bortezomib and carfilzomib are known to target both the constitutive proteasome and the immunoproteasome, two conventional proteasome subtypes comprising distinctive sets of catalytic subunits. While it has become increasingly evident that additional, ‘intermediate’ proteasome subtypes, which harbor non-standard mixtures of constitutive proteasome and immunoproteasome catalytic subunits, represent a considerable proportion of the proteasome population in many cell …


Towards Elucidation Of The Mechanism Of Biological Nanomotors, Zhengyi Zhao Jan 2016

Towards Elucidation Of The Mechanism Of Biological Nanomotors, Zhengyi Zhao

Theses and Dissertations--Pharmacy

Biological functions such as cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging, and cell entry all involve biomotor-driven DNA translocation. In the past, the ubiquitous biological nanomotors were classified into two categories: linear and rotation motors. In 2013, we discovered a third type of biomotor, revolving motor without rotation. The revolving motion is further found to be widespread among many biological systems. In addition, the detailed sequential action mechanism of the ATPase ring in the phi29 dsDNA packaging motor has been elucidated: ATP binding induces a conformational entropy alternation of ATPase …


Chemoenzymatic Studies To Enhance The Chemical Space Of Natural Products, Jhong-Min Chen Jan 2015

Chemoenzymatic Studies To Enhance The Chemical Space Of Natural Products, Jhong-Min Chen

Theses and Dissertations--Pharmacy

Natural products provide some of the most potent anticancer agents and offer a template for new drug design or improvement with the advantage of an enormous chemical space. The overall goal of this thesis research is to enhance the chemical space of two natural products in order to generate novel drugs with better in vivo bioactivities than the original natural products.

Polycarcin V (PV) is a gilvocarcin-type antitumor agent with similar structure and comparable bioactivity with the principle compound of this group, gilvocarcin V (GV). Modest modifications of the polyketide-derived tetracyclic core of GV had been accomplished, but the most …


Amalgamation Of Nucleosides And Amino Acids In Antibiotic Biosynthesis, Sandra H. Barnard Jan 2013

Amalgamation Of Nucleosides And Amino Acids In Antibiotic Biosynthesis, Sandra H. Barnard

Theses and Dissertations--Pharmacy

The rapid increase in antibiotic resistance demands the identification of novel antibiotics with novel targets. One potential antibacterial target is the biosynthesis of peptidoglycan cell wall, which is both ubiquitous and necessary for bacterial survival. Both the caprazamycin-related compounds A-90289 and muraminomicin, as well as the capuramycin-related compounds A-503083 and A-102395 are potent inhibitors of the translocase I enzyme, one of the key enzymes required for cell wall biosynthesis. The caprazamycin-related compounds contain a core nonproteinogen b-hydroxy-a-amino acid referred to as 5’-C-glycyluridine (GlyU). Residing within the biosynthetic gene clusters of the aforementioned compounds is a shared open reading …


Role Of Cyclooxygenase-2 In Abdominal Aortic Aneurysms In Mice, Kamalika Mukherjee Jan 2012

Role Of Cyclooxygenase-2 In Abdominal Aortic Aneurysms In Mice, Kamalika Mukherjee

Theses and Dissertations--Pharmacy

Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease with no available pharmacological treatment. AAA formation reduces the structural integrity of the vessel and increases the susceptibility to rupture. The inflammatory response within human aneurysmal tissue is characterized by increased expression of cyclooxygenase-2 (COX-2). Similarly, in a mouse model of the disease induced by chronic Angiotensin II (AngII) infusion, we have shown that COX-2 expression in the abdominal aortic smooth muscle layer increases early in the development of the disease. Furthermore, genetic or pharmacological inactivation of COX-2 prior to disease initiation reduces AAA incidence.

The current study utilized nonhyperlipidemic mice …