Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Mitochondrial Reactive Oxygen Species In Lipotoxic Hearts Induces Post-Translational Modifications Of Akap121, Drp1 And Opa1 That Promote Mitochondrial Fission, Kensuke Tsushima, Heiko Bugger, Adam R. Wende, Jamie Soto, Gregory A. Jenson, Austin R. Tor, Rose Mcglauflin, Helena C. Kenny, Yuan Zhang, Rhonda Souvenir, Xiao X. Hu, Crystal L. Sloan, Renata O. Pereira, Vitor A. Lira, Kenneth W. Spitzer, Terry L. Sharp, Kooresh I. Shoghi, Genevieve C. Sparagna, Eva A. Rog-Zielinska, Peter Kohl, Oleh Khalimonchuk, Jean E. Schaffer, E. Dale Abel Nov 2017

Mitochondrial Reactive Oxygen Species In Lipotoxic Hearts Induces Post-Translational Modifications Of Akap121, Drp1 And Opa1 That Promote Mitochondrial Fission, Kensuke Tsushima, Heiko Bugger, Adam R. Wende, Jamie Soto, Gregory A. Jenson, Austin R. Tor, Rose Mcglauflin, Helena C. Kenny, Yuan Zhang, Rhonda Souvenir, Xiao X. Hu, Crystal L. Sloan, Renata O. Pereira, Vitor A. Lira, Kenneth W. Spitzer, Terry L. Sharp, Kooresh I. Shoghi, Genevieve C. Sparagna, Eva A. Rog-Zielinska, Peter Kohl, Oleh Khalimonchuk, Jean E. Schaffer, E. Dale Abel

Department of Biochemistry: Faculty Publications

Rationale: Cardiac lipotoxicity, characterized by increased uptake, oxidation and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood.

Objective: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo.

Methods and Results: Using a transgenic mouse model of cardiac lipotoxicity overexpressing long-chain acyl-CoA synthetase 1 in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation …


Effect Of Carbon Monoxide-Releasing Molecule-3 On The Severity Of Endothelial Dysfunction Due To Elevation Of Hydrostatic Pressure In An In Vitro Model Of Compartment Syndrome, Michel A. Taylor Oct 2017

Effect Of Carbon Monoxide-Releasing Molecule-3 On The Severity Of Endothelial Dysfunction Due To Elevation Of Hydrostatic Pressure In An In Vitro Model Of Compartment Syndrome, Michel A. Taylor

Electronic Thesis and Dissertation Repository

Compartment syndrome (CS) is a surgical emergency caused by elevated pressure within a closed osseofascial compartment. It leads to microvascular dysfunction, limiting oxygen and nutrient delivery, gas exchange, resulting in cellular anoxia, muscle necrosis and cell death.

Currently, the only effective treatment is surgical fasciotomy. Recently, carbon monoxide (CO) delivered via carbon monoxide releasing molecule-3 (CORM-3) has been shown to improve microvascular perfusion and convey anti-inflammatory benefits in animal models of CS.

The contribution of elevated hydrostatic pressure (EHP) to the pathophysiology of CS was examined in an in vitro model of CS. We found that EHP led to increased …


Targeting Antioxidant Enzyme Expression As A Therapeutic Strategy For Ischemic Stroke, Stephanie M. Davis, Keith R. Pennypacker Jul 2017

Targeting Antioxidant Enzyme Expression As A Therapeutic Strategy For Ischemic Stroke, Stephanie M. Davis, Keith R. Pennypacker

Center for Advanced Translational Stroke Science Faculty Publications

During ischemic stroke, neurons and glia are subjected to damage during the acute and neuroinflammatory phases of injury. Production of reactive oxygen species (ROS) from calcium dysregulation in neural cells and the invasion of activated immune cells are responsible for stroke-induced neurodegeneration. Scientists have failed thus far to identify antioxidant-based drugs that can enhance neural cell survival and improve recovery after stroke. However, several groups have demonstrated success in protecting against stroke by increasing expression of antioxidant enzymes in neural cells. These enzymes, which include but are not limited to enzymes in the glutathione peroxidase, catalase, and superoxide dismutase families, …


Pnaktide Inhibits Na/K-Atpase Reactive Oxygen Species Amplification And Attenuates Adipogenesis, Komal Sodhi, Kyle Maxwell, Yanling Yan, Jiang Liu, Muhammad Chaudhry, Morgan Getty, Zijian Xie, Nader G. Abraham, Joseph I. Shapiro Md Jun 2017

Pnaktide Inhibits Na/K-Atpase Reactive Oxygen Species Amplification And Attenuates Adipogenesis, Komal Sodhi, Kyle Maxwell, Yanling Yan, Jiang Liu, Muhammad Chaudhry, Morgan Getty, Zijian Xie, Nader G. Abraham, Joseph I. Shapiro Md

Jiang Liu

Obesity has become a worldwide epidemic and is a major risk factor for metabolic syndrome. Oxidative stress is known to play a role in the generation and maintenance of an obesity phenotype in both isolated adipocytes and intact animals. Because we had identified that the Na/K-ATPase can amplify oxidant signaling, we speculated that a peptide designed to inhibit this pathway, pNaKtide, might ameliorate an obesity phenotype. To test this hypothesis, we first performed studies in isolated murine preadipocytes (3T3L1 cells) and found that pNaKtide attenuated oxidant stress and lipid accumulation in a dose-dependent manner. Complementary experiments in C57Bl6 mice fed …


Neurovascular Unit Dysfunction And Blood-Brain Barrier Hyperpermeability Contribute To Schizophrenia Neurobiology: A Theoretical Integration Of Clinical And Experimental Evidence, S. Najjar, S. Pahlajani, V. De Sanctis, J. N.H. Stern, A. Najjar, D. Chong Jan 2017

Neurovascular Unit Dysfunction And Blood-Brain Barrier Hyperpermeability Contribute To Schizophrenia Neurobiology: A Theoretical Integration Of Clinical And Experimental Evidence, S. Najjar, S. Pahlajani, V. De Sanctis, J. N.H. Stern, A. Najjar, D. Chong

Journal Articles

No abstract provided.