Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

University of Nebraska Medical Center

2014

Inbred C57BL

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Expression Of Suppressor Of Cytokine Signaling 1 (Socs1) Impairs Viral Clearance And Exacerbates Lung Injury During Influenza Infection., Keer Sun, Sharon Salmon, Vijaya Kumar Yajjala, Christopher Bauer, Dennis W. Metzger Dec 2014

Expression Of Suppressor Of Cytokine Signaling 1 (Socs1) Impairs Viral Clearance And Exacerbates Lung Injury During Influenza Infection., Keer Sun, Sharon Salmon, Vijaya Kumar Yajjala, Christopher Bauer, Dennis W. Metzger

Journal Articles: Pathology and Microbiology

Suppressor of cytokine signaling (SOCS) proteins are inducible feedback inhibitors of cytokine signaling. SOCS1-/- mice die within three weeks postnatally due to IFN-γ-induced hyperinflammation. Since it is well established that IFN-γ is dispensable for protection against influenza infection, we generated SOCS1-/-IFN-γ-/- mice to determine whether SOCS1 regulates antiviral immunity in vivo. Here we show that SOCS1-/-IFN-γ-/- mice exhibited significantly enhanced resistance to influenza infection, as evidenced by improved viral clearance, attenuated acute lung damage, and consequently increased survival rates compared to either IFN-γ-/- or WT animals. Enhanced viral clearance in SOCS1-/-IFN-γ-/- mice coincided with a rapid onset of adaptive immune …


The Omega-3 Fatty Acid Docosahexaenoic Acid Attenuates Organic Dust-Induced Airway Inflammation., Tara M. Nordgren, Taylor D. Friemel, Art J. Heires, Jill A. Poole, Todd A. Wyatt, Debra J. Romberger Nov 2014

The Omega-3 Fatty Acid Docosahexaenoic Acid Attenuates Organic Dust-Induced Airway Inflammation., Tara M. Nordgren, Taylor D. Friemel, Art J. Heires, Jill A. Poole, Todd A. Wyatt, Debra J. Romberger

Journal Articles: Pulmonary & Critical Care Med

Workers exposed to organic dusts from concentrated animal feeding operations (CAFOs) are at risk for developing airway inflammatory diseases. Available preventative and therapeutic measures for alleviating dust-induced lung disease are inadequate. Because omega-3 fatty acids can mitigate inflammatory processes, we aimed to determine whether nutritional supplementation with the omega-3 fatty acid docosahexaenoic acid (DHA) could reduce the airway inflammatory consequences of exposures to organic dust. Aqueous extracts of organic dusts from swine CAFOs (ODE) were utilized. In DHA-pretreated human bronchial epithelial cells, lung fibroblasts, monocyte cell cultures, and precision-cut murine lung slices, we found that DHA pretreatment dose-dependently decreased ODE-induced …


Swelling And Eicosanoid Metabolites Differentially Gate Trpv4 Channels In Retinal Neurons And Glia., Daniel A. Ryskamp, Andrew O. Jo, Amber M M. Frye, Felix Vazquez-Chona, Nanna Macaulay, Wallace B. Thoreson, David Križaj Nov 2014

Swelling And Eicosanoid Metabolites Differentially Gate Trpv4 Channels In Retinal Neurons And Glia., Daniel A. Ryskamp, Andrew O. Jo, Amber M M. Frye, Felix Vazquez-Chona, Nanna Macaulay, Wallace B. Thoreson, David Križaj

Journal Articles: Ophthalmology

Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca(2+)]i elevations that were inhibited by TRPV4 antagonists and absent in TRPV4(-/-) Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, …


Transformation Of Human Cathelicidin Ll-37 Into Selective, Stable, And Potent Antimicrobial Compounds., Guangshun Wang, Mark L. Hanke, Biswajit Mishra, Tamara Lushnikova, Cortney E. Heim, Vinai Chittezham Thomas, Kenneth W. Bayles, Tammy Kielian Sep 2014

Transformation Of Human Cathelicidin Ll-37 Into Selective, Stable, And Potent Antimicrobial Compounds., Guangshun Wang, Mark L. Hanke, Biswajit Mishra, Tamara Lushnikova, Cortney E. Heim, Vinai Chittezham Thomas, Kenneth W. Bayles, Tammy Kielian

Journal Articles: Pathology and Microbiology

This Letter reports a family of novel antimicrobial compounds obtained by combining peptide library screening with structure-based design. Library screening led to the identification of a human LL-37 peptide resistant to chymotrypsin. This d-amino-acid-containing peptide template was active against Escherichia coli but not methicillin-resistant Staphylococcus aureus (MRSA). It possesses a unique nonclassic amphipathic structure with hydrophobic defects. By repairing the hydrophobic defects, the peptide (17BIPHE2) gained activity against the ESKAPE pathogens, including Enterococcus faecium, S. aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species. In vitro, 17BIPHE2 could disrupt bacterial membranes and bind to DNA. In vivo, the peptide …