Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Medicine and Health Sciences

Xpo1 Blockade With Kpt-330 Promotes Apoptosis In Cutaneous T-Cell Lymphoma By Activating The P53-P21 And P27 Pathways, Nitin Chakravarti, Amy Boles, Rachel Burzinski, Paola Sindaco, Colleen Isabelle, Kathleen Mcconnell, Anjali Mishra, Pierluigi Porcu Apr 2024

Xpo1 Blockade With Kpt-330 Promotes Apoptosis In Cutaneous T-Cell Lymphoma By Activating The P53-P21 And P27 Pathways, Nitin Chakravarti, Amy Boles, Rachel Burzinski, Paola Sindaco, Colleen Isabelle, Kathleen Mcconnell, Anjali Mishra, Pierluigi Porcu

Kimmel Cancer Center Faculty Papers

Dysregulated nuclear-cytoplasmic trafficking has been shown to play a role in oncogenesis in several types of solid tumors and hematological malignancies. Exportin 1 (XPO1) is responsible for the nuclear export of several proteins and RNA species, mainly tumor suppressors. KPT-330, a small molecule inhibitor of XPO1, is approved for treating relapsed multiple myeloma and diffuse large B-cell lymphoma. Cutaneous T-cell lymphoma (CTCL) is an extranodal non-Hodgkin lymphoma with an adverse prognosis and limited treatment options in advanced stages. The effect of therapeutically targeting XPO1 with KPT-330 in CTCL has not been established. We report that XPO1 expression is upregulated in …


Nf-Κb As An Inducible Regulator Of Inflammation In The Central Nervous System, Sudha Anilkumar, Elizabeth Wright-Jin Mar 2024

Nf-Κb As An Inducible Regulator Of Inflammation In The Central Nervous System, Sudha Anilkumar, Elizabeth Wright-Jin

Department of Medicine Faculty Papers

The NF-κB (nuclear factor K-light-chain-enhancer of activated B cells) transcription factor family is critical for modulating the immune proinflammatory response throughout the body. During the resting state, inactive NF-κB is sequestered by IκB in the cytoplasm. The proteasomal degradation of IκB activates NF-κB, mediating its translocation into the nucleus to act as a nuclear transcription factor in the upregulation of proinflammatory genes. Stimuli that initiate NF-κB activation are diverse but are canonically attributed to proinflammatory cytokines and chemokines. Downstream effects of NF-κB are cell type-specific and, in the majority of cases, result in the activation of pro-inflammatory cascades. Acting as …


Scutellaria Baicalensis Enhances 5-Fluorouracil-Based Chemotherapy Via Inhibition Of Proliferative Signaling Pathways, Haizhou Liu, Hui Liu, Zhiyi Zhou, Jessica Chung, Guojing Zhang, Jin Chang, Robert A Parise, Edward Chu, John C Schmitz Jun 2023

Scutellaria Baicalensis Enhances 5-Fluorouracil-Based Chemotherapy Via Inhibition Of Proliferative Signaling Pathways, Haizhou Liu, Hui Liu, Zhiyi Zhou, Jessica Chung, Guojing Zhang, Jin Chang, Robert A Parise, Edward Chu, John C Schmitz

Abington Jefferson Health Papers

Fluoropyridine-based chemotherapy remains the most widely used treatment for colorectal cancer (CRC). In this study, we investigated the mechanism by which the natural product Scutellaria baicalensis (Huang Qin; HQ) and one of its main components baicalin enhanced 5-fluorouracil (5-FU) antitumor activity against CRC. Cell proliferation assays, cell cycle analysis, reverse-phase protein array (RPPA) analysis, immunoblot analysis, and qRT-PCR were performed to investigate the mechanism(s) of action of HQ and its active components on growth of CRC cells. HQ exhibited in vitro antiproliferative activity against drug resistant human CRC cells, against human and mouse CRC cells with different genetic backgrounds and …


Intestinal Neuropod Cell Gucy2c Regulates Visceral Pain, Joshua R. Barton, Annie K. Londregran, Tyler D. Alexander, Ariana A. Entezari, Shely Bar-Ad, Lan Cheng, Angelo C. Lepore, Adam E. Snook, Manuel Covarrubias, Scott A. Waldman Feb 2023

Intestinal Neuropod Cell Gucy2c Regulates Visceral Pain, Joshua R. Barton, Annie K. Londregran, Tyler D. Alexander, Ariana A. Entezari, Shely Bar-Ad, Lan Cheng, Angelo C. Lepore, Adam E. Snook, Manuel Covarrubias, Scott A. Waldman

Department of Pharmacology and Experimental Therapeutics Faculty Papers

Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting …


Serpinb3 Drives Cancer Stem Cell Survival In Glioblastoma, Adam Lauko, Josephine Volovetz, Soumya M Turaga, Defne Bayik, Daniel J Silver, Kelly Mitchell, Erin E Mulkearns-Hubert, Dionysios C Watson, Kiran Desai, Manav Midha, Jing Hao, Kathleen Mccortney, Alicia Steffens, Ulhas Naik, Manmeet S Ahluwalia, Shideng Bao, Craig Horbinski, Jennifer S Yu, Justin D Lathia Sep 2022

Serpinb3 Drives Cancer Stem Cell Survival In Glioblastoma, Adam Lauko, Josephine Volovetz, Soumya M Turaga, Defne Bayik, Daniel J Silver, Kelly Mitchell, Erin E Mulkearns-Hubert, Dionysios C Watson, Kiran Desai, Manav Midha, Jing Hao, Kathleen Mccortney, Alicia Steffens, Ulhas Naik, Manmeet S Ahluwalia, Shideng Bao, Craig Horbinski, Jennifer S Yu, Justin D Lathia

Department of Medicine Faculty Papers

Despite therapeutic interventions for glioblastoma (GBM), cancer stem cells (CSCs) drive recurrence. The precise mechanisms underlying CSC resistance, namely inhibition of cell death, are unclear. We built on previous observations that the high cell surface expression of junctional adhesion molecule-A drives CSC maintenance and identified downstream signaling networks, including the cysteine protease inhibitor SerpinB3. Using genetic depletion approaches, we found that SerpinB3 is necessary for CSC maintenance, survival, and tumor growth, as well as CSC pathway activation. Knockdown of SerpinB3 also increased apoptosis and susceptibility to radiation therapy. SerpinB3 was essential to buffer cathepsin L-mediated cell death, which was enhanced …


Endorepellin Evokes An Angiostatic Stress Signaling Cascade In Endothelial Cells., Aastha Kapoor, Carolyn G Chen, Renato V Iozzo May 2020

Endorepellin Evokes An Angiostatic Stress Signaling Cascade In Endothelial Cells., Aastha Kapoor, Carolyn G Chen, Renato V Iozzo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4, and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2, which, in turn, phosphorylated PERK at Thr980 Subsequently, PERK phosphorylated eIF2α at Ser51, upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated up-regulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex …


Targeting The Stat5 Pathway In Ph+ Acute Lymphoblastic Leukemia, Valentina Minieri, Marco De Dominici, Marja T. Nevalainen, Bruno Calabretta Dec 2018

Targeting The Stat5 Pathway In Ph+ Acute Lymphoblastic Leukemia, Valentina Minieri, Marco De Dominici, Marja T. Nevalainen, Bruno Calabretta

Department of Cancer Biology Faculty Papers

No abstract provided.


Hormone Whodunit: Clues For Solving The Case Of Intratumor Androgen Production., Karen E Knudsen Nov 2014

Hormone Whodunit: Clues For Solving The Case Of Intratumor Androgen Production., Karen E Knudsen

Department of Cancer Biology Faculty Papers

One of the key mechanisms by which prostate cancer cells evade hormone therapy is through intratumor testosterone production. New evidence points toward androstenedione as a potential precursor of intratumor androgen production and furthers nomination of AKR1C3 as a therapeutic target in advanced disease. Clin Cancer Res; 20(21); 5343-5. ©2014 AACR.


We Can Do It Together: Par1/Par2 Heterodimer Signaling In Vsmcs., Rafal Pawlinski, Michael Holinstat Dec 2011

We Can Do It Together: Par1/Par2 Heterodimer Signaling In Vsmcs., Rafal Pawlinski, Michael Holinstat

Department of Medicine Faculty Papers

In this issue, Sevigny and colleagues demonstrate that a protease-activated receptor 1 (PAR1)-PAR2 heterodimer regulates vascular smooth muscle cell (VSMC) hyperplasia following vascular injury 1. PARs belong to a family of G-protein coupled receptors that are proteolytically activated by a variety of proteases 2, 3. Cleavage of PARs results in intracellular signaling mediated by activation of various G proteins including G12/13, Gq, and Gi 2, 4-6. The PAR family consists of 4 members, PAR1-PAR4, with PARs 1, 3, and 4 being primarily activated by thrombin, while PAR2 is activated by trypsin and …


Role Of Growth Factors In The Pathogenesis Of Tissue Fibrosis In Systemic Sclerosis., Sergio A. Jimenez, Susan V. Castro, Sonsoles Piera-Velazquez Nov 2010

Role Of Growth Factors In The Pathogenesis Of Tissue Fibrosis In Systemic Sclerosis., Sergio A. Jimenez, Susan V. Castro, Sonsoles Piera-Velazquez

Department of Medicine Faculty Papers

The most severe clinical and pathologic manifestations of systemic sclerosis (SSc) are the result of a fibrotic process characterized by the excessive and often progressive deposition of collagen and other connective tissue macromolecules in skin and numerous internal organs. The mechanisms involved in the initiation and progression of the remarkable fibrotic process in SSc remain largely unknown. Extensive recent studies have indicated that a variety of polypeptide growth factors play a crucial role in this process. The most commonly implicated growth factors include transforming growth factor beta (TGF-β), connective tissue growth factor (CTGF), platelet derived growth factor (PDGF), and vascular …


Proteoglycans In Health And Disease: Novel Regulatory Signaling Mechanisms Evoked By The Small Leucine-Rich Proteoglycans., Renato V. Iozzo, Liliana Schaefer Oct 2010

Proteoglycans In Health And Disease: Novel Regulatory Signaling Mechanisms Evoked By The Small Leucine-Rich Proteoglycans., Renato V. Iozzo, Liliana Schaefer

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

The small leucine-rich proteoglycans (SLRPs) are involved in many aspects of mammalian biology, both in health and disease. They are now being recognized as key signaling molecules with an expanding repertoire of molecular interactions affecting not only growth factors, but also various receptors involved in controlling cell growth, morphogenesis and immunity. The complexity of SLRP signaling and the multitude of affected signaling pathways can be reconciled with a hierarchical affinity-based interaction of various SLRPs in a cell- and tissue-specific context. Here, we review this interacting network, describe new relationships of the SLRPs with tyrosine kinase and Toll-like receptors and critically …