Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

PDF

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Cell Line

Articles 1 - 9 of 9

Full-Text Articles in Medicine and Health Sciences

Posttranscriptional Upregulation Of Idh1 By Hur Establishes A Powerful Survival Phenotype In Pancreatic Cancer Cells., Mahsa Zarei, Shruti Lal, Seth J. Parker, Avinoam Nevler, Ali Vaziri-Gohar, Katerina Dukleska, Nicole C. Mambelli-Lisboa, Cynthia Moffat, Fernando F Blanco, Saswati N. Chand, Masaya Jimbo, Joseph A. Cozzitorto, Wei Jiang, Charles J. Yeo, Eric R. Londin, Erin L. Seifert, Christian M. Metallo, Jonathan R. Brody, Jordan M. Winter Aug 2017

Posttranscriptional Upregulation Of Idh1 By Hur Establishes A Powerful Survival Phenotype In Pancreatic Cancer Cells., Mahsa Zarei, Shruti Lal, Seth J. Parker, Avinoam Nevler, Ali Vaziri-Gohar, Katerina Dukleska, Nicole C. Mambelli-Lisboa, Cynthia Moffat, Fernando F Blanco, Saswati N. Chand, Masaya Jimbo, Joseph A. Cozzitorto, Wei Jiang, Charles J. Yeo, Eric R. Londin, Erin L. Seifert, Christian M. Metallo, Jonathan R. Brody, Jordan M. Winter

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Cancer aggressiveness may result from the selective pressure of a harsh nutrient-deprived microenvironment. Here we illustrate how such conditions promote chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC). Glucose or glutamine withdrawal resulted in a 5- to 10-fold protective effect with chemotherapy treatment. PDAC xenografts were less sensitive to gemcitabine in hypoglycemic mice compared with hyperglycemic mice. Consistent with this observation, patients receiving adjuvant gemcitabine (n = 107) with elevated serum glucose levels (HgbA1C > 6.5%) exhibited improved survival. We identified enhanced antioxidant defense as a driver of chemoresistance in this setting. ROS levels were doubled in vitro by either nutrient withdrawal …


Targeting Fibroblast Activation Protein In Tumor Stroma With Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth And Augment Host Immunity Without Severe Toxicity., Liang-Chuan S. Wang, Albert Lo, John Scholler, Jing Sun, Rajrupa S. Majumdar, Veena Kapoor, Michael Antzis, Cody E. Cotner, Laura A. Johnson, Amy C. Durham, Charalambos C. Solomides, Md, Carl H. June, Ellen Puré, Steven M. Albelda Feb 2014

Targeting Fibroblast Activation Protein In Tumor Stroma With Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth And Augment Host Immunity Without Severe Toxicity., Liang-Chuan S. Wang, Albert Lo, John Scholler, Jing Sun, Rajrupa S. Majumdar, Veena Kapoor, Michael Antzis, Cody E. Cotner, Laura A. Johnson, Amy C. Durham, Charalambos C. Solomides, Md, Carl H. June, Ellen Puré, Steven M. Albelda

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

The majority of chimeric antigen receptor (CAR) T-cell research has focused on attacking cancer cells. Here, we show that targeting the tumor-promoting, nontransformed stromal cells using CAR T cells may offer several advantages. We developed a retroviral CAR construct specific for the mouse fibroblast activation protein (FAP), comprising a single-chain Fv FAP [monoclonal antibody (mAb) 73.3] with the CD8α hinge and transmembrane regions, and the human CD3ζ and 4-1BB activation domains. The transduced muFAP-CAR mouse T cells secreted IFN-γ and killed FAP-expressing 3T3 target cells specifically. Adoptively transferred 73.3-FAP-CAR mouse T cells selectively reduced FAP(hi) stromal cells and inhibited the …


Necrostatin-1 Analogues: Critical Issues On The Specificity, Activity And In Vivo Use In Experimental Disease Models., N Takahashi, L Duprez, S Grootjans, A Cauwels, W Nerinckx, J B Duhadaway, V Goossens, R Roelandt, F Van Hauwermeiren, C Libert, W Declercq, N Callewaert, G C Prendergast, A Degterev, J Yuan, P Vandenabeele Nov 2012

Necrostatin-1 Analogues: Critical Issues On The Specificity, Activity And In Vivo Use In Experimental Disease Models., N Takahashi, L Duprez, S Grootjans, A Cauwels, W Nerinckx, J B Duhadaway, V Goossens, R Roelandt, F Van Hauwermeiren, C Libert, W Declercq, N Callewaert, G C Prendergast, A Degterev, J Yuan, P Vandenabeele

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∼100 × …


Decorin-Mediated Inhibition Of Colorectal Cancer Growth And Migration Is Associated With E-Cadherin In Vitro And In Mice., Xiuli Bi, Nicole M Pohl, Zhibin Qian, George R Yang, Yuan Gou, Grace Guzman, Andre Kajdacsy-Balla, Renato V Iozzo, Wancai Yang Feb 2012

Decorin-Mediated Inhibition Of Colorectal Cancer Growth And Migration Is Associated With E-Cadherin In Vitro And In Mice., Xiuli Bi, Nicole M Pohl, Zhibin Qian, George R Yang, Yuan Gou, Grace Guzman, Andre Kajdacsy-Balla, Renato V Iozzo, Wancai Yang

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Previous studies have shown that decorin expression is significantly reduced in colorectal cancer tissues and cancer cells, and genetic deletion of the decorin gene is sufficient to cause intestinal tumor formation in mice, resulting from a downregulation of p21, p27(kip1) and E-cadherin and an upregulation of β-catenin signaling [Bi,X. et al. (2008) Genetic deficiency of decorin causes intestinal tumor formation through disruption of intestinal cell maturation. Carcinogenesis, 29, 1435-1440]. However, the regulation of E-cadherin by decorin and its implication in cancer formation and metastasis is largely unknown. Using a decorin knockout mouse model (Dcn(-/-) mice) and manipulated expression of decorin …


Systems-Level Interactions Between Insulin-Egf Networks Amplify Mitogenic Signaling., Nikolay Borisov, Edita Aksamitiene, Anatoly Kiyatkin, Stefan Legewie, Jan Berkhout, Thomas Maiwald, Nikolai P Kaimachnikov, Jens Timmer, Jan B Hoek, Boris N Kholodenko Jan 2009

Systems-Level Interactions Between Insulin-Egf Networks Amplify Mitogenic Signaling., Nikolay Borisov, Edita Aksamitiene, Anatoly Kiyatkin, Stefan Legewie, Jan Berkhout, Thomas Maiwald, Nikolai P Kaimachnikov, Jens Timmer, Jan B Hoek, Boris N Kholodenko

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Crosstalk mechanisms have not been studied as thoroughly as individual signaling pathways. We exploit experimental and computational approaches to reveal how a concordant interplay between the insulin and epidermal growth factor (EGF) signaling networks can potentiate mitogenic signaling. In HEK293 cells, insulin is a poor activator of the Ras/ERK (extracellular signal-regulated kinase) cascade, yet it enhances ERK activation by low EGF doses. We find that major crosstalk mechanisms that amplify ERK signaling are localized upstream of Ras and at the Ras/Raf level. Computational modeling unveils how critical network nodes, the adaptor proteins GAB1 and insulin receptor substrate (IRS), Src kinase, …


Multiple Forms Of Atypical Rearrangements Generating Supernumerary Derivative Chromosome 15., Nicholas J Wang, Alexander S Parokonny, Karen N Thatcher, Jennette Driscoll, Barbara M Malone, Naghmeh Dorrani, Marian Sigman, Janine M Lasalle, N Carolyn Schanen Jan 2008

Multiple Forms Of Atypical Rearrangements Generating Supernumerary Derivative Chromosome 15., Nicholas J Wang, Alexander S Parokonny, Karen N Thatcher, Jennette Driscoll, Barbara M Malone, Naghmeh Dorrani, Marian Sigman, Janine M Lasalle, N Carolyn Schanen

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: Maternally-derived duplications that include the imprinted region on the proximal long arm of chromosome 15 underlie a complex neurobehavioral disorder characterized by cognitive impairment, seizures and a substantial risk for autism spectrum disorders1. The duplications most often take the form of a supernumerary pseudodicentric derivative chromosome 15 [der(15)] that has been called inverted duplication 15 or isodicentric 15 [idic(15)], although interstitial rearrangements also occur. Similar to the deletions found in most cases of Angelman and Prader Willi syndrome, the duplications appear to be mediated by unequal homologous recombination involving low copy repeats (LCR) that are found clustered in the …


Elucidating A Normal Function Of Huntingtin By Functional And Microarray Analysis Of Huntingtin-Null Mouse Embryonic Fibroblasts., Hua Zhang, Sudipto Das, Quan-Zhen Li, Ioannis Dragatsis, Joyce Repa, Scott Zeitlin, György Hajnóczky, Ilya Bezprozvanny Jan 2008

Elucidating A Normal Function Of Huntingtin By Functional And Microarray Analysis Of Huntingtin-Null Mouse Embryonic Fibroblasts., Hua Zhang, Sudipto Das, Quan-Zhen Li, Ioannis Dragatsis, Joyce Repa, Scott Zeitlin, György Hajnóczky, Ilya Bezprozvanny

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: The polyglutamine expansion in huntingtin (Htt) protein is a cause of Huntington's disease (HD). Htt is an essential gene as deletion of the mouse Htt gene homolog (Hdh) is embryonic lethal in mice. Therefore, in addition to elucidating the mechanisms responsible for polyQ-mediated pathology, it is also important to understand the normal function of Htt protein for both basic biology and for HD. RESULTS: To systematically search for a mouse Htt function, we took advantage of the Hdh +/- and Hdh-floxed mice and generated four mouse embryonic fibroblast (MEF) cells lines which contain a single copy of the Hdh …


Transcriptional Regulatory Network Analysis During Epithelial-Mesenchymal Transformation Of Retinal Pigment Epithelium., Craig H Pratt, Rajanikanth Vadigepalli, Praveen Chakravarthula, Gregory E Gonye, Nancy J Philp, Gerald B Grunwald Jan 2008

Transcriptional Regulatory Network Analysis During Epithelial-Mesenchymal Transformation Of Retinal Pigment Epithelium., Craig H Pratt, Rajanikanth Vadigepalli, Praveen Chakravarthula, Gregory E Gonye, Nancy J Philp, Gerald B Grunwald

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

PURPOSE: Phenotypic transformation of retinal pigment epithelial (RPE) cells contributes to the onset and progression of ocular proliferative disorders such as proliferative vitreoretinopathy (PVR). The formation of epiretinal membranes in PVR may involve an epithelial-mesenchymal transformation (EMT) of RPE cells as part of an aberrant wound healing response. While the underlying mechanism remains unclear, this likely involves changes in RPE cell gene expression under the control of specific transcription factors (TFs). Thus, the purpose of the present study was to identify TFs that may play a role in this process.

METHODS: Regulatory regions of genes that are differentially regulated during …


Classification And Risk Stratification Of Invasive Breast Carcinomas Using A Real-Time Quantitative Rt-Pcr Assay., Laurent Perreard, Cheng Fan, John F Quackenbush, Michael Mullins, Nicholas P Gauthier, Edward Nelson, Mary Mone, Heidi Hansen, Saundra S Buys, Karen Rasmussen, Alejandra Ruiz Orrico, Donna Dreher, Rhonda Walters, Joel Parker, Zhiyuan Hu, Xiaping He, Juan P Palazzo, Olufunmilayo I Olopade, Aniko Szabo, Charles M Perou, Philip S Bernard Jan 2006

Classification And Risk Stratification Of Invasive Breast Carcinomas Using A Real-Time Quantitative Rt-Pcr Assay., Laurent Perreard, Cheng Fan, John F Quackenbush, Michael Mullins, Nicholas P Gauthier, Edward Nelson, Mary Mone, Heidi Hansen, Saundra S Buys, Karen Rasmussen, Alejandra Ruiz Orrico, Donna Dreher, Rhonda Walters, Joel Parker, Zhiyuan Hu, Xiaping He, Juan P Palazzo, Olufunmilayo I Olopade, Aniko Szabo, Charles M Perou, Philip S Bernard

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

INTRODUCTION: Predicting the clinical course of breast cancer is often difficult because it is a diverse disease comprised of many biological subtypes. Gene expression profiling by microarray analysis has identified breast cancer signatures that are important for prognosis and treatment. In the current article, we use microarray analysis and a real-time quantitative reverse-transcription (qRT)-PCR assay to risk-stratify breast cancers based on biological 'intrinsic' subtypes and proliferation. METHODS: Gene sets were selected from microarray data to assess proliferation and to classify breast cancers into four different molecular subtypes, designated Luminal, Normal-like, HER2+/ER-, and Basal-like. One-hundred and twenty-three breast samples (117 invasive …