Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

PDF

Virginia Commonwealth University

Theses/Dissertations

Computed tomography

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Multi-Modality Automatic Lung Tumor Segmentation Method Using Deep Learning And Radiomics, Siqiu Wang Jan 2022

Multi-Modality Automatic Lung Tumor Segmentation Method Using Deep Learning And Radiomics, Siqiu Wang

Theses and Dissertations

Delineation of the tumor volume is the initial and fundamental step in the radiotherapy planning process. The current clinical practice of manual delineation is time-consuming and suffers from observer variability. This work seeks to develop an effective automatic framework to produce clinically usable lung tumor segmentations. First, to facilitate the development and validation of our methodology, an expansive database of planning CTs, diagnostic PETs, and manual tumor segmentations was curated, and an image registration and preprocessing pipeline was established. Then a deep learning neural network was constructed and optimized to utilize dual-modality PET and CT images for lung tumor segmentation. …


Advances In Dual-Energy Computed Tomography Imaging Of Radiological Properties, Dong Han Jan 2018

Advances In Dual-Energy Computed Tomography Imaging Of Radiological Properties, Dong Han

Theses and Dissertations

Dual-energy computed tomography (DECT) has shown great potential in the reduction of uncertainties of proton ranges and low energy photon cross section estimation used in radiation therapy planning. The work presented herein investigated three contributions for advancing DECT applications. 1) A linear and separable two-parameter DECT, the basis vector model (BVM) was used to estimate proton stopping power. Compared to other nonlinear two-parameter models in the literature, the BVM model shows a comparable accuracy achieved for typical human tissues. This model outperforms other nonlinear models in estimations of linear attenuation coefficients. This is the first study to clearly illustrate the …


Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett Jan 2018

Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett

Theses and Dissertations

Four dimensional imaging has become part of the standard of care for diagnosing and treating non-small cell lung cancer. In radiotherapy applications 4D fan-beam computed tomography (4D-CT) and 4D cone-beam computed tomography (4D-CBCT) are two advanced imaging modalities that afford clinical practitioners knowledge of the underlying kinematics and structural dynamics of diseased tissues and provide insight into the effects of regular organ motion and the nature of tissue deformation over time. While these imaging techniques can facilitate the use of more targeted radiotherapies, issues surrounding image quality and accuracy currently limit the utility of these images clinically.

The purpose of …