Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Epc-Exs Improve Astrocyte Survival And Oxidative Stress Through Different Uptaking Pathways In Diabetic Hypoxia Condition, Manasi Suchit Halurkar, Jinju Wang, Shuzhen Chen, Ji Chen Bihl Dec 2022

Epc-Exs Improve Astrocyte Survival And Oxidative Stress Through Different Uptaking Pathways In Diabetic Hypoxia Condition, Manasi Suchit Halurkar, Jinju Wang, Shuzhen Chen, Ji Chen Bihl

Pharmacology and Toxicology Faculty Publications

Background: Hyperglycemia contributes to cardiovascular complications in patients with type 2 diabetes. We confirmed that high glucose (HG) induces endothelial dysfunction and cerebral ischemic injury is enlarged in diabetic mice. Stem cell-released exosomes have been shown to protect the brain from ischemic stroke. We have previously shown that endothelial progenitor cells (EPCs)-released exosomes (EPC-EXs) can protect endothelial cells from hypoxia/reoxygenation (H/R) and HG-induced injury. Here, we aim to investigate the effects of EPC-EXs on astrocytes under H/R and HG-induced injury and whether miR-126 enriched EPC-EXs (miR126-EPC-EXs) have enhanced efficacy. Methods: EPC-EX uptake and co-localization were measured by fluorescent microscopy using …


Lysosomal Zn 2+ Release Triggers Rapid, Mitochondria-Mediated, Non-Apoptotic Cell Death In Metastatic Melanoma, Wanlu Du, Mingxue Gu, Meiqin Hu, Timothy Nold, Prateeksunder Pinchi, Wei Chen, Michael Ryan, Ahmed Bannaga, Haoxing Xu Jun 2022

Lysosomal Zn 2+ Release Triggers Rapid, Mitochondria-Mediated, Non-Apoptotic Cell Death In Metastatic Melanoma, Wanlu Du, Mingxue Gu, Meiqin Hu, Timothy Nold, Prateeksunder Pinchi, Wei Chen, Michael Ryan, Ahmed Bannaga, Haoxing Xu

Medical Student Research Symposium

During tumor progression, lysosome function is often maladaptively upregulated to match the high energy demand required for cancer cell hyper-proliferation and invasion. Here, we report that mucolipin TRP channel 1 (TRPML1), a lysosomal Ca2+ and Zn2+ release channel that regulates multiple aspects of lysosome function, is dramatically upregulated in metastatic melanoma cells compared with normal cells. TRPML-specific synthetic agonists (ML-SAs) are sufficient to induce rapid (within hours) lysosomal Zn2+-dependent necrotic cell death in metastatic melanoma cells while completely sparing normal cells. ML-SA-caused mitochondria swelling and dysfunction lead to cellular ATP depletion. While pharmacological inhibition or genetic silencing of TRPML1 in …