Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

Pharmacology and Nutritional Sciences Faculty Publications

Aged

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Brain Microvascular Injury And White Matter Disease Provoked By Diabetes-Associated Hyperamylinemia, Han Ly, Nirmal Verma, Fengen Wu, Miao Liu, Kathryn E. Saatman, Peter T. Nelson, John T. Slevin, Larry B. Goldstein, Geert Jan Biessels, Florin Despa Aug 2017

Brain Microvascular Injury And White Matter Disease Provoked By Diabetes-Associated Hyperamylinemia, Han Ly, Nirmal Verma, Fengen Wu, Miao Liu, Kathryn E. Saatman, Peter T. Nelson, John T. Slevin, Larry B. Goldstein, Geert Jan Biessels, Florin Despa

Pharmacology and Nutritional Sciences Faculty Publications

OBJECTIVE: The brain blood vessels of patients with type 2 diabetes and dementia have deposition of amylin, an amyloidogenic hormone cosecreted with insulin. It is not known whether vascular amylin deposition is a consequence or a trigger of vascular injury. We tested the hypothesis that the vascular amylin deposits cause endothelial dysfunction and microvascular injury and are modulated by amylin transport in the brain via plasma apolipoproteins.

METHODS: Rats overexpressing amyloidogenic (human) amylin in the pancreas (HIP rats) and amylin knockout (AKO) rats intravenously infused with aggregated amylin were used for in vivo phenotyping. We also carried out biochemical analyses …


Expansion Of The Calcium Hypothesis Of Brain Aging And Alzheimer's Disease: Minding The Store, Olivier Thibault, John C. Gant, Philip W. Landfield Apr 2007

Expansion Of The Calcium Hypothesis Of Brain Aging And Alzheimer's Disease: Minding The Store, Olivier Thibault, John C. Gant, Philip W. Landfield

Pharmacology and Nutritional Sciences Faculty Publications

Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimer's disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging-related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+transients, and L-type voltage-gated Ca2+ channel (L-VGCC) activity. Several of these changes have been associated with age-related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L-VGCC activity drives many of the other Ca2+-related biomarkers of hippocampal aging. …