Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

Department of Biochemistry and Molecular Biology Faculty Papers

Series

2013

Catalysis

Articles 1 - 1 of 1

Full-Text Articles in Medicine and Health Sciences

Conservation Of Structure And Mechanism By Trm5 Enzymes., Thomas Christian, Howard Gamper, Ya-Ming Hou Sep 2013

Conservation Of Structure And Mechanism By Trm5 Enzymes., Thomas Christian, Howard Gamper, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Enzymes of the Trm5 family catalyze methyl transfer from S-adenosyl methionine (AdoMet) to the N¹ of G37 to synthesize m¹ G37-tRNA as a critical determinant to prevent ribosome frameshift errors. Trm5 is specific to eukaryotes and archaea, and it is unrelated in evolution from the bacterial counterpart TrmD, which is a leading anti-bacterial target. The successful targeting of TrmD requires detailed information on Trm5 to avoid cross-species inhibition. However, most information on Trm5 is derived from studies of the archaeal enzyme Methanococcus jannaschii (MjTrm5), whereas little information is available for eukaryotic enzymes. Here we use human Trm5 (Homo sapiens; HsTrm5) …