Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Substrate Envelope And Drug Resistance: Crystal Structure Of Ro1 In Complex With Wild-Type Human Immunodeficiency Virus Type 1 Protease, Moses Prabu-Jeyabalan, Nancy M. King, Ellen A. Nalivaika, Gabrielle Heilek-Snyder, Nick Cammack, Celia A. Schiffer Nov 2011

Substrate Envelope And Drug Resistance: Crystal Structure Of Ro1 In Complex With Wild-Type Human Immunodeficiency Virus Type 1 Protease, Moses Prabu-Jeyabalan, Nancy M. King, Ellen A. Nalivaika, Gabrielle Heilek-Snyder, Nick Cammack, Celia A. Schiffer

Celia A. Schiffer

In our previous crystallographic studies of human immunodeficiency virus type 1 (HIV-1) protease-substrate complexes, we described a conserved "envelope" that appears to be important for substrate recognition and the selection of drug-resistant mutations. In this study, the complex of HIV-1 protease with the inhibitor RO1 was determined and comparison with the substrate envelope provides a rationale for mutational patterns.


Structural Analysis Of Human Immunodeficiency Virus Type 1 Crf01_Ae Protease In Complex With The Substrate P1-P6., Rajintha Bandaranayake, Moses Prabu-Jeyabalan, Junko Kakizawa, Wataru Sugiura, Celia Schiffer Nov 2011

Structural Analysis Of Human Immunodeficiency Virus Type 1 Crf01_Ae Protease In Complex With The Substrate P1-P6., Rajintha Bandaranayake, Moses Prabu-Jeyabalan, Junko Kakizawa, Wataru Sugiura, Celia Schiffer

Celia A. Schiffer

The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 A. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.