Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

University of Kentucky

Theses/Dissertations

2019

Traumatic brain injury

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Neuroprotective Strategies Following Experimental Traumatic Brain Injury: Lipid Peroxidation-Derived Aldehyde Scavenging And Inhibition Of Mitochondrial Permeability Transition, Jacqueline Renee Kulbe Jan 2019

Neuroprotective Strategies Following Experimental Traumatic Brain Injury: Lipid Peroxidation-Derived Aldehyde Scavenging And Inhibition Of Mitochondrial Permeability Transition, Jacqueline Renee Kulbe

Theses and Dissertations--Neuroscience

Traumatic brain injury (TBI) represents a significant health crisis. To date there are no FDA-approved pharmacotherapies available to prevent the neurologic deficits caused by TBI. Following TBI, dysfunctional mitochondria generate reactive oxygen and nitrogen species, initiating lipid peroxidation (LP) and the formation of LP-derived neurotoxic aldehydes, which bind mitochondrial proteins, exacerbating dysfunction and opening of the mitochondrial permeability pore (mPTP), resulting in extrusion of mitochondrial sequestered calcium into the cytosol, and initiating a downstream cascade of calpain activation, spectrin degradation, neurodegeneration and neurologic impairment.

As central mediators of the TBI secondary injury cascade, mitochondria and LP-derived neurotoxic aldehydes make promising …


Pathological Tau As A Cause, And Consequence, Of Cellular Dysfunction, Shelby Meier Jan 2019

Pathological Tau As A Cause, And Consequence, Of Cellular Dysfunction, Shelby Meier

Theses and Dissertations--Physiology

Tauopathies are a group of neurodegenerative diseases characterized by the abnormal deposition of the protein tau, a microtubule stabilizing protein. Under normal physiological conditions tau is a highly soluble protein that is not prone to aggregation. In disease states alterations to tau lead to enhanced fibril formation and aggregation, eventually forming neurofibrillary tangles (NFTs). The exact cause for NFT deposition is unknown, but increased post-translational modifications and mutations to the tau gene can increase tangle formation.

Tauopathic brains are stuck in a detrimental cycle, with cellular dysfunction contributing to the development of tau pathology and the development of tau pathology …