Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Mismatch Repair Genes Mlh1 And Mlh3 Modify Cag Instability In Huntington's Disease Mice: Genome-Wide And Candidate Approaches, Ricardo Mouro Pinto, Ella Dragileva, Andrew Kirby, Alejandro Lloret, Edith Lopez, Jason St. Claire, Gagan B. Panigrahi, Caixia Hou, Kim Holloway, Tammy Gillis, Jolene R. Guide, Paula E. Cohen, Guo-Min Li, Christopher E. Pearson, Mark J. Daly, Vanessa C. Wheeler Oct 2013

Mismatch Repair Genes Mlh1 And Mlh3 Modify Cag Instability In Huntington's Disease Mice: Genome-Wide And Candidate Approaches, Ricardo Mouro Pinto, Ella Dragileva, Andrew Kirby, Alejandro Lloret, Edith Lopez, Jason St. Claire, Gagan B. Panigrahi, Caixia Hou, Kim Holloway, Tammy Gillis, Jolene R. Guide, Paula E. Cohen, Guo-Min Li, Christopher E. Pearson, Mark J. Daly, Vanessa C. Wheeler

Toxicology and Cancer Biology Faculty Publications

The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. …


Proteomic Analysis Of Mismatch Repair-Mediated Alkylating Agent-Induced Dna Damage Response, Xi Chen, Yong Zhao, Guo-Min Li, Lin Guo Sep 2013

Proteomic Analysis Of Mismatch Repair-Mediated Alkylating Agent-Induced Dna Damage Response, Xi Chen, Yong Zhao, Guo-Min Li, Lin Guo

Toxicology and Cancer Biology Faculty Publications

BACKGROUND: Mediating DNA damage-induced apoptosis is an important genome-maintenance function of the mismatch repair (MMR) system. Defects in MMR not only cause carcinogenesis, but also render cancer cells highly resistant to chemotherapeutics, including alkylating agents. To understand the mechanisms of MMR-mediated apoptosis and MMR-deficiency-caused drug resistance, we analyze a model alkylating agent (N-methyl-N’-nitro-N-nitrosoguanidine, MNNG)-induced changes in protein phosphorylation and abundance in two cell lines, the MMR-proficient TK6 and its derivative MMR-deficient MT1.

RESULTS: Under an experimental condition that MNNG-induced apoptosis was only observed in MutSα-proficient (TK6), but not in MutSα-deficient (MT1) cells, quantitative analysis …


Protection Of Dietary Polyphenols Against Oral Cancer, Yijian Ding, Hua Yao, Yanan Yao, Leonard Yenwong Fai, Zhuo Zhang Jun 2013

Protection Of Dietary Polyphenols Against Oral Cancer, Yijian Ding, Hua Yao, Yanan Yao, Leonard Yenwong Fai, Zhuo Zhang

Toxicology and Cancer Biology Faculty Publications

Oral cancer represents a health burden worldwide with approximate 275,000 new cases diagnosed annually. Its poor prognosis is due to local tumor invasion and frequent lymph node metastasis. Better understanding and development of novel treatments and chemo-preventive approaches for the preventive and therapeutic intervention of this type of cancer are necessary. Recent development of dietary polyphenols as cancer preventives and therapeutic agents is of great interest due to their antioxidant and anti-carcinogenic activities. Polyphenols may inhibit carcinogenesis in the stage of initiation, promotion, or progression. In particular, dietary polyphenols decrease incidence of carcinomas and exert protection against oral cancer by …


Uv Radiation And The Skin, John A. D'Orazio, Stuart G. Jarrett, Alexandra Amaro-Ortiz, Timothy Scott Jun 2013

Uv Radiation And The Skin, John A. D'Orazio, Stuart G. Jarrett, Alexandra Amaro-Ortiz, Timothy Scott

Toxicology and Cancer Biology Faculty Publications

UV radiation (UV) is classified as a "complete carcinogen" because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and …


Loss Of Fbp1 By Snail-Mediated Repression Provides Metabolic Advantages In Basal-Like Breast Cancer, Chenfang Dong, Tingting Yuan, Yadi Wu, Yifan Wang, Teresa W-M Fan, Sumitra Miriyala, Yiwei Lin, Jun Yao, Jian Shi, Tiebang Kang, Pawel Lorkiewicz, Daret St. Clair, Mien-Chie Hung, B. Mark Evers, Binhua P. Zhou Mar 2013

Loss Of Fbp1 By Snail-Mediated Repression Provides Metabolic Advantages In Basal-Like Breast Cancer, Chenfang Dong, Tingting Yuan, Yadi Wu, Yifan Wang, Teresa W-M Fan, Sumitra Miriyala, Yiwei Lin, Jun Yao, Jian Shi, Tiebang Kang, Pawel Lorkiewicz, Daret St. Clair, Mien-Chie Hung, B. Mark Evers, Binhua P. Zhou

Toxicology and Cancer Biology Faculty Publications

The epithelial-mesenchymal transition (EMT) enhances cancer invasiveness and confers tumor cells with cancer stem cell (CSC)-like characteristics. We show that the Snail-G9a-Dnmt1 complex, which is critical for E-cadherin promoter silencing, is also required for the promoter methylation of fructose-1,6-biphosphatase (FBP1) in basal-like breast cancer (BLBC). Loss of FBP1 induces glycolysis and results in increased glucose uptake, macromolecule biosynthesis, formation of tetrameric PKM2, and maintenance of ATP production under hypoxia. Loss of FBP1 also inhibits oxygen consumption and reactive oxygen species production by suppressing mitochondrial complex I activity; this metabolic reprogramming results in an increased CSC-like property and tumorigenicity by enhancing …