Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

The Texas Medical Center Library

2008

Mice

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Contribution Of The Collagen Adhesin Acm To Pathogenesis Of Enterococcus Faecium In Experimental Endocarditis, Sreedhar R Nallapareddy, Kavindra V Singh, Barbara E Murray Sep 2008

Contribution Of The Collagen Adhesin Acm To Pathogenesis Of Enterococcus Faecium In Experimental Endocarditis, Sreedhar R Nallapareddy, Kavindra V Singh, Barbara E Murray

Faculty and Staff Publications

Enterococcus faecium is a multidrug-resistant opportunist causing difficult-to-treat nosocomial infections, including endocarditis, but there are no reports experimentally demonstrating E. faecium virulence determinants. Our previous studies showed that some clinical E. faecium isolates produce a cell wall-anchored collagen adhesin, Acm, and that an isogenic acm deletion mutant of the endocarditis-derived strain TX0082 lost collagen adherence. In this study, we show with a rat endocarditis model that TX0082 Deltaacm::cat is highly attenuated versus wild-type TX0082, both in established (72 h) vegetations (P < 0.0001) and for valve colonization 1 and 3 hours after infection (P or=50-fold reduction relative to an Acm producer) were found in three of these five nonadherent isolates, including the sequenced strain TX0016, by quantitative reverse transcription-PCR, indicating that acm transcription is downregulated in vitro in these isolates. However, examination of TX0016 cells obtained directly from infected rat vegetations by flow cytometry showed that Acm was present on 40% of cells grown during infection. Finally, we demonstrated a significant reduction in E. faecium collagen adherence by affinity-purified anti-Acm antibodies from E. faecium endocarditis patient sera, suggesting that Acm may be a potential immunotarget for strategies to control this emerging pathogen.


Large Scale Variation In Enterococcus Faecalis Illustrated By The Genome Analysis Of Strain Og1rf, Agathe Bourgogne, Danielle A Garsin, Xiang Qin, Kavindra V Singh, Jouko Sillanpaa, Shailaja Yerrapragada, Yan Ding, Shannon Dugan-Rocha, Christian Buhay, Hua Shen, Guan Chen, Gabrielle Williams, Donna Muzny, Arash Maadani, Kristina A Fox, Jason Gioia, Lei Chen, Yue Shang, Cesar A Arias, Sreedhar R Nallapareddy, Meng Zhao, Vittal P Prakash, Shahreen Chowdhury, Huaiyang Jiang, Richard A Gibbs, Barbara E Murray, Sarah K Highlander, George M Weinstock Jan 2008

Large Scale Variation In Enterococcus Faecalis Illustrated By The Genome Analysis Of Strain Og1rf, Agathe Bourgogne, Danielle A Garsin, Xiang Qin, Kavindra V Singh, Jouko Sillanpaa, Shailaja Yerrapragada, Yan Ding, Shannon Dugan-Rocha, Christian Buhay, Hua Shen, Guan Chen, Gabrielle Williams, Donna Muzny, Arash Maadani, Kristina A Fox, Jason Gioia, Lei Chen, Yue Shang, Cesar A Arias, Sreedhar R Nallapareddy, Meng Zhao, Vittal P Prakash, Shahreen Chowdhury, Huaiyang Jiang, Richard A Gibbs, Barbara E Murray, Sarah K Highlander, George M Weinstock

Faculty and Staff Publications

BACKGROUND: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies.

RESULTS: The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence …