Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

Old Dominion University

Brain-computer interface

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Signals From Intraventricular Depth Electrodes Can Control A Brain-Computer Interface, Jerry J. Shih, Dean J. Krusienski Jan 2012

Signals From Intraventricular Depth Electrodes Can Control A Brain-Computer Interface, Jerry J. Shih, Dean J. Krusienski

Electrical & Computer Engineering Faculty Publications

A Brain-Computer Interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans have used scalp-recorded electroencephalography (EEG). We have recently demonstrated that signals from intracranial electrocorticography (ECoG) and stereotactic depth electrodes (SDE) in the hippocampus can be used to control a BCI P300 Speller paradigm. We report a case in which stereotactic depth electrodes positioned in the ventricle were able to obtain viable signals for a BCI. Our results demonstrate that event-related potentials from intraventricular electrodes can be used to reliably control the …


Exploration Of Computational Methods For Classification Of Movement Intention During Human Voluntary Movement From Single Trial Eeg, Ou Bai, Peter Lin, Sherry Vorbach, Jiang Li, Steve Furlani, Mark Hallett Jan 2007

Exploration Of Computational Methods For Classification Of Movement Intention During Human Voluntary Movement From Single Trial Eeg, Ou Bai, Peter Lin, Sherry Vorbach, Jiang Li, Steve Furlani, Mark Hallett

Electrical & Computer Engineering Faculty Publications

Objective: To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG).

Methods: Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis …