Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang Jan 2023

Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang

Computer Science Faculty Publications

Motivation: Cancer heterogeneity drastically affects cancer therapeutic outcomes. Predicting drug response in vitro is expected to help formulate personalized therapy regimens. In recent years, several computational models based on machine learning and deep learning have been proposed to predict drug response in vitro. However, most of these methods capture drug features based on a single drug description (e.g. drug structure), without considering the relationships between drugs and biological entities (e.g. target, diseases, and side effects). Moreover, most of these methods collect features separately for drugs and cell lines but fail to consider the pairwise interactions between drugs and cell …


Npgreat: Assembly Of The Human Subtelomere Regions With The Use Of Ultralong Nanopore Reads And Linked Reads, Eleni Adam, Desh Ranjan, Harold Riethman Dec 2022

Npgreat: Assembly Of The Human Subtelomere Regions With The Use Of Ultralong Nanopore Reads And Linked Reads, Eleni Adam, Desh Ranjan, Harold Riethman

Computer Science Faculty Publications

Background: Human subtelomeric DNA regulates the length and stability of adjacent telomeres that are critical for cellular function, and contains many gene/pseudogene families. Large evolutionarily recent segmental duplications and associated structural variation in human subtelomeres has made complete sequencing and assembly of these regions difficult to impossible for many loci, complicating or precluding a wide range of genetic analyses to investigate their function.

Results: We present a hybrid assembly method, NanoPore Guided REgional Assembly Tool (NPGREAT), which combines Linked-Read data with mapped ultralong nanopore reads spanning subtelomeric segmental duplications to potentially overcome these difficulties. Linked-Read sets of DNA sequences identified …


Fmri Feature Extraction Model For Adhd Classification Using Convolutional Neural Network, Senuri De Silva, Sanuwani Udara Dayarathna, Gangani Ariyarathne, Dulani Meedeniya, Sampath Jayarathna Jan 2021

Fmri Feature Extraction Model For Adhd Classification Using Convolutional Neural Network, Senuri De Silva, Sanuwani Udara Dayarathna, Gangani Ariyarathne, Dulani Meedeniya, Sampath Jayarathna

Computer Science Faculty Publications

Biomedical intelligence provides a predictive mechanism for the automatic diagnosis of diseases and disorders. With the advancements of computational biology, neuroimaging techniques have been used extensively in clinical data analysis. Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder, with the symptomology of inattention, impulsivity, and hyperactivity, in which early diagnosis is crucial to prevent unwelcome outcomes. This study addresses ADHD identification using functional magnetic resonance imaging (fMRI) data for the resting state brain by evaluating multiple feature extraction methods. The features of seed-based correlation (SBC), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) are comparatively applied to …


Dormant Pathogenic Cd4(+) T Cells Are Prevalent In The Peripheral Repertoire Of Healthy Mice, Anna Cebula, Michal Kuczma, Edyta Szurek, Maciej Pietrzak, Natasha Savage, Wessam R. Elhefnawy, Grzegorz Rempala, Piotr Kraj, Leszek Ignatowicz Oct 2019

Dormant Pathogenic Cd4(+) T Cells Are Prevalent In The Peripheral Repertoire Of Healthy Mice, Anna Cebula, Michal Kuczma, Edyta Szurek, Maciej Pietrzak, Natasha Savage, Wessam R. Elhefnawy, Grzegorz Rempala, Piotr Kraj, Leszek Ignatowicz

Computer Science Faculty Publications

Thymic central tolerance eliminates most immature T cells with autoreactive T cell receptors (TCR) that recognize self MHC/peptide complexes. Regardless, an unknown number of autoreactive CD4+Foxp3 T cells escape negative selection and in the periphery require continuous suppression by CD4+Foxp3+ regulatory cells (Tregs). Here, we compare immune repertoires of Treg-deficient and Treg-sufficient mice to find Tregs continuously constraining one-third of mature CD4+Foxp3 cells from converting to pathogenic effectors in healthy mice. These dormant pathogenic clones frequently express TCRs activatable by ubiquitous autoantigens presented by class II MHCs on conventional dendritic cells, including selfpeptides that select …


An Iterative Bézier Method For Fitting Beta-Sheet Component Of A Cryo-Em Density Map, Michael Poteat, Jing He Jan 2017

An Iterative Bézier Method For Fitting Beta-Sheet Component Of A Cryo-Em Density Map, Michael Poteat, Jing He

Computer Science Faculty Publications

Cryo-electron microscopy (Cryo-EM) is a powerful technique to produce 3-dimensional density maps for large molecular complexes. Although many atomic structures have been solved from cryo-EM density maps, it is challenging to derive atomic structures when the resolution of density maps is not sufficiently high. Geometrical shape representation of secondary structural components in a medium-resolution density map enhances modeling of atomic structures. We compare two methods in producing surface representation of the β-sheet component of a density map. Given a 3-dimensional volume of β-sheet that is segmented from a density map, the performance of a polynomial fitting was compared with that …


A Nonrigid Registration Method For Correcting Brain Deformation Induced By Tumor Resection, Yixun Liu, Chengjun Yao, Fotis Drakopoulos, Jinsong Wu, Liangfu Zhou, Nikos Chrisochoides Jan 2014

A Nonrigid Registration Method For Correcting Brain Deformation Induced By Tumor Resection, Yixun Liu, Chengjun Yao, Fotis Drakopoulos, Jinsong Wu, Liangfu Zhou, Nikos Chrisochoides

Computer Science Faculty Publications

Purpose: This paper presents a nonrigid registration method to align preoperative MRI with intraoperative MRI to compensate for brain deformation during tumor resection. This method extends traditional point-based nonrigid registration in two aspects: (1) allow the input data to be incomplete and (2) simulate the underlying deformation with a heterogeneous biomechanical model.

Methods: The method formulates the registration as a three-variable (point correspondence, deformation field, and resection region) functional minimization problem, in which point correspondence is represented by a fuzzy assign matrix; Deformation field is represented by a piecewise linear function regularized by the strain energy of a heterogeneous biomechanical …