Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

Chapman University

Alzheimer’s disease

Publication Year

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Tolfenamic Acid Derivatives: A New Class Of Transcriptional Modulators With Potential Therapeutic Applications For Alzheimer’S Disease And Related Disorders, Juanetta Hill, Karim E. Shalaby, Syed W. Bihaqi, Bothaina H. Alansi, Benjamin Barlock, Keykavous Parang, Richard Thompson, Khalid Ourarhni, Nasser H. Zawia Oct 2023

Tolfenamic Acid Derivatives: A New Class Of Transcriptional Modulators With Potential Therapeutic Applications For Alzheimer’S Disease And Related Disorders, Juanetta Hill, Karim E. Shalaby, Syed W. Bihaqi, Bothaina H. Alansi, Benjamin Barlock, Keykavous Parang, Richard Thompson, Khalid Ourarhni, Nasser H. Zawia

Pharmacy Faculty Articles and Research

The field of Alzheimer’s disease (AD) has witnessed recent breakthroughs in the development of disease-modifying biologics and diagnostic markers. While immunotherapeutic interventions have provided much-awaited solutions, nucleic acid-based tools represent other avenues of intervention; however, these approaches are costly and invasive, and they have serious side effects. Previously, we have shown in AD animal models that tolfenamic acid (TA) can lower the expression of AD-related genes and their products and subsequently reduce pathological burden and improve cognition. Using TA as a scaffold and the zinc finger domain of SP1 as a pharmacophore, we developed safer and more potent brain-penetrating analogs …


Alcohol As A Modifiable Risk Factor For Alzheimer’S Disease—Evidence From Experimental Studies, Devaraj V. Chandrashekar, Ross A. Steinberg, Derick Han, Rachita K. Sumbria May 2023

Alcohol As A Modifiable Risk Factor For Alzheimer’S Disease—Evidence From Experimental Studies, Devaraj V. Chandrashekar, Ross A. Steinberg, Derick Han, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment and memory loss. Epidemiological evidence suggests that heavy alcohol consumption aggravates AD pathology, whereas low alcohol intake may be protective. However, these observations have been inconsistent, and because of methodological discrepancies, the findings remain controversial. Alcohol-feeding studies in AD mice support the notion that high alcohol intake promotes AD, while also hinting that low alcohol doses may be protective against AD. Chronic alcohol feeding to AD mice that delivers alcohol doses sufficient to cause liver injury largely promotes and accelerates AD pathology. The mechanisms by which alcohol can …


The Promises And Challenges Of Erythropoietin For Treatment Of Alzheimer's Disease, Jiahong Sun, Jan Michelle Martin, Victoria Vanderpoel, Rachita K. Sumbria Jan 2019

The Promises And Challenges Of Erythropoietin For Treatment Of Alzheimer's Disease, Jiahong Sun, Jan Michelle Martin, Victoria Vanderpoel, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder in the world, and intracellular neurofibrillary tangles and extracellular amyloid-beta protein deposits represent the major pathological hallmarks of the disease. Currently available treatments provide some symptomatic relief but fail to modify primary pathological processes that underlie the disease. Erythropoietin (EPO), a hematopoietic growth factor, acts primarily to stimulate erythroid cell production, and is clinically used to treat anemia. EPO has evolved as a therapeutic agent for neurodegeneration and has improved neurological outcomes and AD pathology in rodents. However, penetration of the blood–brain barrier (BBB) and negative hematopoietic effects are the two …


Hematologic Safety Of Chronic Brain-Penetrating Erythropoietin Dosing In App/Ps1 Mice, Jiahong Sun, Joshua Yang, Kathrine Whitman, Charlene Zhu, David H. Cribbs, Ruben J. Boado, William M. Pardridge, Rachita K. Sumbria Jan 2019

Hematologic Safety Of Chronic Brain-Penetrating Erythropoietin Dosing In App/Ps1 Mice, Jiahong Sun, Joshua Yang, Kathrine Whitman, Charlene Zhu, David H. Cribbs, Ruben J. Boado, William M. Pardridge, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

Introduction: Low blood-brain barrier (BBB) penetration and hematopoietic side effects limit the therapeutic development of erythropoietin (EPO) for Alzheimer's disease (AD). A fusion protein of EPO and a chimeric monoclonal antibody targeting the mouse transferrin receptor (cTfRMAb) has been engineered. The latter drives EPO into the brain via receptor-mediated transcytosis across the BBB and increases its peripheral clearance to reduce hematopoietic side effects of EPO. Our previous work shows the protective effects of this BBB-penetrating EPO in AD mice but hematologic effects have not been studied. Herein, we investigate the hematologic safety and therapeutic effects of chronic cTfRMAb-EPO dosing, …


Role Of Microglial Amylin Receptors In Mediating Beta Amyloid (Aβ)-Induced Inflammation, Wen Fu, Vlatka Vukojevic, Aarti Patel, Rania Soudy, David Mactavish, David Westaway, Kamaljit Kaur, Valeri Goncharuk, Jack Jhamandas Oct 2017

Role Of Microglial Amylin Receptors In Mediating Beta Amyloid (Aβ)-Induced Inflammation, Wen Fu, Vlatka Vukojevic, Aarti Patel, Rania Soudy, David Mactavish, David Westaway, Kamaljit Kaur, Valeri Goncharuk, Jack Jhamandas

Pharmacy Faculty Articles and Research

Background: Neuroinflammation in the brain consequent to activation of microglia is viewed as an important component of Alzheimer’s disease (AD) pathology. Amyloid beta (Aβ) protein is known to activate microglia and unleash an inflammatory cascade that eventually results in neuronal dysfunction and death. In this study, we sought to identify the presence of amylin receptors on human fetal and murine microglia and determine whether Aβ activation of the inflammasome complex and subsequent release of cytokines is mediated through these receptors.

Methods: The presence of dimeric components of the amylin receptor (calcitonin receptor and receptor activity modifying protein 3) …


Tumor Necrosis Factor Α Inhibition For Alzheimer's Disease, Rudy Chang, Kei-Lwun Yee, Rachita K. Sumbria May 2017

Tumor Necrosis Factor Α Inhibition For Alzheimer's Disease, Rudy Chang, Kei-Lwun Yee, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer’s disease (AD). Food and Drug Administration–approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.


Cyclic Ac253, A Novel Amylin Receptor Antagonist, Improves Cognitive Deficits In A Mouse Model Of Alzheimer’S Disease, Rania Soudy, Aarti Patel, Wen Fu, Kamaljit Kaur, David Mactavish, David Westaway, Rachel Davey, Jeffrey Zajac, Jack Jhamandas Jan 2017

Cyclic Ac253, A Novel Amylin Receptor Antagonist, Improves Cognitive Deficits In A Mouse Model Of Alzheimer’S Disease, Rania Soudy, Aarti Patel, Wen Fu, Kamaljit Kaur, David Mactavish, David Westaway, Rachel Davey, Jeffrey Zajac, Jack Jhamandas

Pharmacy Faculty Articles and Research

Introduction: Amylin receptor serves as a portal for the expression of deleterious effects of amyloid b-protein (Ab), a key pathologic hallmark of Alzheimer’s disease. Previously, we showed that AC253, an amylin receptor antagonist, is neuroprotective against Ab toxicity in vitro and abrogates Ab-induced impairment of hippocampal long-term potentiation.

Methods: Amyloid precursor protein–overexpressing TgCRND8 mice received intracerebroventricularly AC253 for 5 months. New cyclized peptide cAC253 was synthesized and administered intraperitoneally three times a week for 10 weeks in the same mouse model. Cognitive functions were monitored, and pathologic changes were quantified biochemically and immunohistochemically.

Results: AC253, when administered …