Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

PDF

Spinal Cord and Brain Injury Research Center Faculty Publications

Mitochondria

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Genetic Approach To Elucidate The Role Of Cyclophilin D In Traumatic Brain Injury Pathology, Ryan D. Readnower, W. Brad Hubbard, Olivia J. Kalimon, James W. Geddes, Patrick G. Sullivan Jan 2021

Genetic Approach To Elucidate The Role Of Cyclophilin D In Traumatic Brain Injury Pathology, Ryan D. Readnower, W. Brad Hubbard, Olivia J. Kalimon, James W. Geddes, Patrick G. Sullivan

Spinal Cord and Brain Injury Research Center Faculty Publications

Cyclophilin D (CypD) has been shown to play a critical role in mitochondrial permeability transition pore (mPTP) opening and the subsequent cell death cascade. Studies consistently demonstrate that mitochondrial dysfunction, including mitochondrial calcium overload and mPTP opening, is essential to the pathobiology of cell death after a traumatic brain injury (TBI). CypD inhibitors, such as cyclosporin A (CsA) or NIM811, administered following TBI, are neuroprotective and quell neurological deficits. However, some pharmacological inhibitors of CypD have multiple biological targets and, as such, do not directly implicate a role for CypD in arbitrating cell death after TBI. Here, we reviewed the …


Mitochondrial Transplantation Strategies As Potential Therapeutics For Central Nervous System Trauma, Jenna L. Gollihue, Samir P. Patel, Alexander G. Rabchevsky Mar 2018

Mitochondrial Transplantation Strategies As Potential Therapeutics For Central Nervous System Trauma, Jenna L. Gollihue, Samir P. Patel, Alexander G. Rabchevsky

Spinal Cord and Brain Injury Research Center Faculty Publications

Mitochondria are essential cellular organelles critical for generating adenosine triphosphate for cellular homeostasis, as well as various mechanisms that can lead to both necrosis and apoptosis. The field of “mitochondrial medicine” is emerging in which injury/disease states are targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. Consequently, novel mitochondrial transplantation strategies represent a potentially multifactorial therapy leading to increased adenosine triphosphate production, decreased oxidative stress, mitochondrial DNA replacement, improved bioenergetics and tissue sparing. Herein, we describe briefly the history of mitochondrial transplantation and the various techniques used for both in …