Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Role Of Occludin In The Regulation Of Epithelial Tight Junctions, Bhargavi Manda Dec 2016

Role Of Occludin In The Regulation Of Epithelial Tight Junctions, Bhargavi Manda

Theses and Dissertations (ETD)

Tight junctions (TJ) constitute the primary component of epithelial barrier function, a disruption of which is involved in the pathogenesis of many gastrointestinal, pulmonary and renal diseases. Occludin is the major transmembrane protein of TJ, a deletion of which leads to a complex phenotype including chronic inflammation in several epithelial tissues of occludin deficient mice and poor TJ integrity in epithelial cell lines. Its down regulation was seen in Crohn’s disease, tumors of the colon, brain, endometrium and breast cancer. Occludin is also known to be a target that enables Hepatitis C Virus infection and bacterial pathogenesis. But the specific …


Dissecting The Physiological Roles Of Ulk1/2 In The Mouse Brain, Bo Wang Dec 2016

Dissecting The Physiological Roles Of Ulk1/2 In The Mouse Brain, Bo Wang

Theses and Dissertations (ETD)

Mammalian UNC-51–like kinases 1 and 2 (ULK1 and ULK2), Caenorhabditis elegans UNC-51 and Drosophila melanogaster Atg1 are redundant serine/threonine kinases that regulate flux through the autophagy pathway in response to various types of cellular stress. C. elegans UNC-51 and D. melanogaster Atg1 also promote axonal growth and defasciculation, and disruption of these genes results in defects in axon guidance in invertebrates. Germline Ulk1/2-deficient mice die perinatally. Therefore, we used a conditional-knockout approach to investigate the roles of ULK1/2 in the brain. Mice lacking Ulk1 and Ulk2 in their central nervous systems (CNS) showed defects in axonal pathfinding and defasciculation affecting …