Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Pathology

Dartmouth Scholarship

2010

Mice

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Optimal Bone Strength And Mineralization Requires The Type 2 Iodothyronine Deiodinase In Osteoblasts, J. H. D. Bassett, Alan Boyde, Peter G. T. Howell, Richard H. Bassett, Thomas M. Galliford, Marta Archanco, Holly Evans, Michelle A. Lawson, Peter Croucher, Donald L. St. Germain, Valerie A. Galton, Graham R. Williams Apr 2010

Optimal Bone Strength And Mineralization Requires The Type 2 Iodothyronine Deiodinase In Osteoblasts, J. H. D. Bassett, Alan Boyde, Peter G. T. Howell, Richard H. Bassett, Thomas M. Galliford, Marta Archanco, Holly Evans, Michelle A. Lawson, Peter Croucher, Donald L. St. Germain, Valerie A. Galton, Graham R. Williams

Dartmouth Scholarship

Hypothyroidism and thyrotoxicosis are each associated with an increased risk of fracture. Although thyroxine (T4) is the predominant circulating thyroid hormone, target cell responses are determined by local intracellular availability of the active hormone 3,5,3'-L-triiodothyronine (T3), which is generated from T4 by the type 2 deiodinase enzyme (D2). To investigate the role of locally produced T3 in bone, we characterized mice deficient in D2 (D2KO) in which the serum T3 level is normal. Bones from adult D2KO mice have reduced toughness and are brittle, displaying an increased susceptibility to fracture. This phenotype is characterized by a 50% reduction in bone …


Acat1 Gene Ablation Increases 24(S)-Hydroxycholesterol Content In The Brain And Ameliorates Amyloid Pathology In Mice With Ad, Elena Y. Bryleva, Maximillian A. Rogers, Catherine C. Y. Chang, Floyd Buen Feb 2010

Acat1 Gene Ablation Increases 24(S)-Hydroxycholesterol Content In The Brain And Ameliorates Amyloid Pathology In Mice With Ad, Elena Y. Bryleva, Maximillian A. Rogers, Catherine C. Y. Chang, Floyd Buen

Dartmouth Scholarship

Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-beta, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human …