Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Acat1 Gene Ablation Increases 24(S)-Hydroxycholesterol Content In The Brain And Ameliorates Amyloid Pathology In Mice With Ad, Elena Y. Bryleva, Maximillian A. Rogers, Catherine C. Y. Chang, Floyd Buen Feb 2010

Acat1 Gene Ablation Increases 24(S)-Hydroxycholesterol Content In The Brain And Ameliorates Amyloid Pathology In Mice With Ad, Elena Y. Bryleva, Maximillian A. Rogers, Catherine C. Y. Chang, Floyd Buen

Dartmouth Scholarship

Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-beta, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human …


Interaction Of The Mu-Opioid Receptor With Gpr177 (Wntless) Inhibits Wnt Secretion: Potential Implications For Opioid Dependence., Jay Jin, Saranya Kittanakom, Victoria Wong, Beverly A S Reyes, Elisabeth J Van Bockstaele, Igor Stagljar, Wade Berrettini, Robert Levenson Jan 2010

Interaction Of The Mu-Opioid Receptor With Gpr177 (Wntless) Inhibits Wnt Secretion: Potential Implications For Opioid Dependence., Jay Jin, Saranya Kittanakom, Victoria Wong, Beverly A S Reyes, Elisabeth J Van Bockstaele, Igor Stagljar, Wade Berrettini, Robert Levenson

Department of Neurosurgery Faculty Papers

BACKGROUND: Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs) may help to elucidate the underlying mechanisms involved in the development of opioid dependence. RESULTS: GPR177, the mammalian ortholog of Drosophila …