Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Characterization Of The Chicken Inward Rectifier K+ Channel Irk1/Kir2.1 Gene., Hideki Mutai, Lawrence C Kenyon, Emily Locke, Nami Kikuchi, John Carl Oberholtzer Nov 2004

Characterization Of The Chicken Inward Rectifier K+ Channel Irk1/Kir2.1 Gene., Hideki Mutai, Lawrence C Kenyon, Emily Locke, Nami Kikuchi, John Carl Oberholtzer

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: Inward rectifier potassium channels (IRK) contribute to the normal function of skeletal and cardiac muscle cells. The chick inward rectifier K+ channel cIRK1/Kir2.1 is expressed in skeletal muscle, heart, brain, but not in liver; a distribution similar but not identical to that of mouse Kir2.1. We set out to explore regulatory domains of the cIRK1 promoter that enhance or inhibit expression of the gene in different cell types. RESULTS: We cloned and characterized the 5'-flanking region of cIRK1. cIRK1 contains two exons with splice sites in the 5'-untranslated region, a structure similar to mouse and human orthologs. cIRK1 has …


Multiple Mechanisms Regulate Numa Dynamics At Spindle Poles, Olga Kisurina-Evgenieva, Gary Mack, Quansheng Du, Ian Macara, Alexey Khodjakov, Duane A. Compton Sep 2004

Multiple Mechanisms Regulate Numa Dynamics At Spindle Poles, Olga Kisurina-Evgenieva, Gary Mack, Quansheng Du, Ian Macara, Alexey Khodjakov, Duane A. Compton

Dartmouth Scholarship

The large coiled-coil protein NuMA plays an essential role in organizing microtubule minus ends at spindle poles in vertebrate cells. Here, we use both in vivo and in vitro methods to examine NuMA dynamics at mitotic spindle poles. Using fluorescence recovery after photobleaching, we show that an exogenously expressed green-fluorescent-protein/NuMA fusion undergoes continuous exchange between soluble and spindle-associated pools in living cells. These dynamics require cellular energy and display an average half-time for fluorescence recovery of approximately 3 minutes. To explore how NuMA dynamics at spindle poles is regulated, we exploited the association of NuMA with microtubule asters formed in …


Biochemical Enrichment And Biophysical Characterization Of A Taste Receptor For L-Arginine From The Catfish, Ictalurus Puntatus., William Grosvenor, Yuri Kaulin, Andrew I Spielman, Douglas L Bayley, D Lynn Kalinoski, John H Teeter, Joseph G Brand Jul 2004

Biochemical Enrichment And Biophysical Characterization Of A Taste Receptor For L-Arginine From The Catfish, Ictalurus Puntatus., William Grosvenor, Yuri Kaulin, Andrew I Spielman, Douglas L Bayley, D Lynn Kalinoski, John H Teeter, Joseph G Brand

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: The channel catfish, Ictalurus punctatus, is invested with a high density of cutaneous taste receptors, particularly on the barbel appendages. Many of these receptors are sensitive to selected amino acids, one of these being a receptor for L-arginine (L-Arg). Previous neurophysiological and biophysical studies suggested that this taste receptor is coupled directly to a cation channel and behaves as a ligand-gated ion channel receptor (LGICR). Earlier studies demonstrated that two lectins, Ricinus communis agglutinin I (RCA-I) and Phaseolus vulgaris Erythroagglutinin (PHA-E), inhibited the binding of L-Arg to its presumed receptor sites, and that PHA-E inhibited the L-Arg-stimulated ion conductance …


Fibroblast Growth Factor 2 Endocytosis In Endothelial Cells Proceed Via Syndecan-4-Dependent Activation Of Rac1 And A Cdc42-Dependent Macropinocytic Pathway, Eugene Tkachenko, Esther Lutgens, Radu-Virgil Stan, Michael Simons Feb 2004

Fibroblast Growth Factor 2 Endocytosis In Endothelial Cells Proceed Via Syndecan-4-Dependent Activation Of Rac1 And A Cdc42-Dependent Macropinocytic Pathway, Eugene Tkachenko, Esther Lutgens, Radu-Virgil Stan, Michael Simons

Dartmouth Scholarship

Full activity of fibroblast growth factors (FGFs) requires their internalization in addition to the interaction with cell surface receptors. Recent studies have suggested that the transmembrane proteoglycan syndecan-4 functions as a FGF2 receptor. In this study we investigated the molecular basis of syndecan endocytosis and its role in FGF2 internalization in endothelial cells. We found that syndecan-4 uptake, induced either by treatment with FGF2 or by antibody clustering, requires the integrity of plasma membrane lipid rafts for its initiation, occurs in a non-clathrin-, non-dynamin-dependent manner and involves Rac1, which is activated by syndecan-4 clustering. FGF2 was internalized in a complex …


Signaling Switches And Bistability Arising From Multisite Phosphorylation In Protein Kinase Cascades., Nick I Markevich, Jan B. Hoek, Boris N. Kholodenko Feb 2004

Signaling Switches And Bistability Arising From Multisite Phosphorylation In Protein Kinase Cascades., Nick I Markevich, Jan B. Hoek, Boris N. Kholodenko

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Mitogen-activated protein kinase (MAPK) cascades can operate as bistable switches residing in either of two different stable states. MAPK cascades are often embedded in positive feedback loops, which are considered to be a prerequisite for bistable behavior. Here we demonstrate that in the absence of any imposed feedback regulation, bistability and hysteresis can arise solely from a distributive kinetic mechanism of the two-site MAPK phosphorylation and dephosphorylation. Importantly, the reported kinetic properties of the kinase (MEK) and phosphatase (MKP3) of extracellular signal-regulated kinase (ERK) fulfill the essential requirements for generating a bistable switch at a single MAPK cascade level. Likewise, …


Creation Of Non-Human Primate Neurogenetic Disease Models By Gene Targeting And Nuclear Transfer, Robert B. Norgren Jan 2004

Creation Of Non-Human Primate Neurogenetic Disease Models By Gene Targeting And Nuclear Transfer, Robert B. Norgren

Journal Articles: Genetics, Cell Biology & Anatomy

Genetically modified rhesus macaques are necessary because mouse models are not suitable for a number of important neurogenetic disorders; for example, Kallmann's syndrome, Lesch-Nyhan's disease and Ataxia-Telangiectasia. Mouse models may not be suitable because there may be no mouse ortholog of the human gene of interest, as is the case for Kallmann's syndrome, or because mutant mice do not exhibit the same phenotype observed in humans, as is the the case for Lesch-Nyhan's disease and Ataxia-Telangiectasia. Non-human primate models of neurogenetic diseases are expected to more closely resemble human diseases than existing mouse models. Genetically modified rhesus macaques can be …