Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Rheological Characterization Of Blood-Mimicking Fluids For Use In Particle Image Velocimetry, Anorin S. Ali Aug 2022

Rheological Characterization Of Blood-Mimicking Fluids For Use In Particle Image Velocimetry, Anorin S. Ali

Undergraduate Student Research Internships Conference

Blood-mimicking fluids (BMFs) are often used to investigate blood flow using physical replicas of vessels with cardiovascular disease. Particle image velocimetry (PIV) is used with silicone poly-dimethyl siloxane (PDMS) vascular models to visualize this flow. The challenge is creating a blood-mimicking fluid that matches the viscosity profile, viscoelasticity, and density of whole blood while also matching the refractive index (RI) of PDMS. Water-glycerol solutions are commonly used with sodium iodide (NaI) added to increase the RI without changing viscosity. However, NaI is expensive, stains easily, and turns fluids from optically clear to yellow in less than a day. Furthermore, without …


Ex-Smokers With And Without Copd: Investigating Ct Pulmonary Vascular, Airway, Pulmonary Artery And Aorta Measurements, Vedanth Desaigoudar, Paulina V. Wyszkiewicz, Alexander M. Matheson, Maksym Sharma, Marrissa J. Mcintosh, Harkiran K. Kooner, David G. Mccormack, Grace Parraga Aug 2022

Ex-Smokers With And Without Copd: Investigating Ct Pulmonary Vascular, Airway, Pulmonary Artery And Aorta Measurements, Vedanth Desaigoudar, Paulina V. Wyszkiewicz, Alexander M. Matheson, Maksym Sharma, Marrissa J. Mcintosh, Harkiran K. Kooner, David G. Mccormack, Grace Parraga

Undergraduate Student Research Internships Conference

RATIONALE: Pulmonary hypertension is characterized by increased pressure in the pulmonary artery, and is a key contributor to worsening symptoms in individuals with chronic obstructive pulmonary disease (COPD). The pulmonary artery to aorta diameter ratio (PA:Ao), measured using computed tomography (CT), is a biomarker of pulmonary hypertension; however, longitudinal changes in this measurement and its relationship to pulmonary vascular and airway structural changes is not well understood. Our objective was to investigate longitudinal changes in PA:Ao and its relationship with CT pulmonary vascular and airway abnormalities, airflow limitation and exercise-capacity.


Microvascular Regulation Between Two Hemodynamic Steady States In The Forearm And Forehead Using Wavelet Phase Coherence, Yuki Bao Aug 2022

Microvascular Regulation Between Two Hemodynamic Steady States In The Forearm And Forehead Using Wavelet Phase Coherence, Yuki Bao

Undergraduate Student Research Internships Conference

Microvascular mechanisms that regulate the microcirculation can be observed within blood flow as coupled oscillations operating over a wide range of different frequencies and time scales. Abnormally discordant interactions between regulation mechanisms can cause derangement of microvascular flow patterns, which has been suggested to be indicative of increased cardiovascular disease risk. Based on the premise that interactions between microvascular mechanisms are key to understanding flow regulation and disease progression, wavelet-based phase coherence was used to characterize the relationship between cardiac, respiratory, myogenic, neurogenic, and metabolic regulation across different microvascular beds and physiological conditions.

Steady state cutaneous microvascular blood flow data …


In-Vitro Validation Of Intratumoral Modulation Therapy For Glioblastoma, Abdulla Elsaleh Aug 2022

In-Vitro Validation Of Intratumoral Modulation Therapy For Glioblastoma, Abdulla Elsaleh

Undergraduate Student Research Internships Conference

Intratumoral modulation therapy (IMT) is a novel electrotherapy used to treat brain cancer tumours using electric fields applied directly to the tumours through implanted electrodes. Previous research has validated IMT's effectiveness and provided computer-simulated optimizations for IMT electric fields. This work validates these computer optimizations in-vitro, using a PCB construct to deliver electric fields, and bioluminescence imaging to assess cell viability.

We found electric field strength to correlate with cell viability, and found that rotating (phase-shifted) electric fields did not produce significant improvements in IMT efficacy. Future work will investigate different IMT frequencies and other parameters, while providing biological replicates …


Development Of A Low Field Mri-Based Approach For Observation Of Water Penetration Into Clay: Preliminary Results, Shivam Gupta Aug 2021

Development Of A Low Field Mri-Based Approach For Observation Of Water Penetration Into Clay: Preliminary Results, Shivam Gupta

Undergraduate Student Research Internships Conference

Magnetic resonance imaging (MRI) are considered one of the most efficient and non-invasive methods of observing water content in permeable substances. MRI can visualize and quantify the movement of water in real time. In this study, MRI was used to observe the water penetration through clay. Furthermore, MRI can acquire three-dimensional data due to its radio-frequency signals from any orientation. The contrast of the images produced by MRI is a display of the fluid concentration. As such, any change in the contrast intensity is interpreted as a regional change in the concentration of fluid. This report summarizes the preliminary results …


Simulating 129-Xe Hyperpolarization, Jacob F. Abiad Aug 2021

Simulating 129-Xe Hyperpolarization, Jacob F. Abiad

Undergraduate Student Research Internships Conference

Hyperpolarized 129-Xe is an important resource in many fields of medical physics and MRI research. The physics of the efficient production of hyperpolarized 129-Xe is therefore equally worth investigation. The main process of hyperpolarizing 129-Xe is Spin Exchange Optical Pumping (SEOP) and is dependent on several physical factors that can be difficult to constantly change in a lab setting. Physical modelling of 129-Xe hyperpolarization allows for the more efficient testing of hyperpolarization physics in a wide array of experimental setups to better determine the optimal values for hyperpolarization. This research project attempted to create a working model for 129-Xe hyperpolarization …


Effect Of Carbon Monoxide Releasing Molecule 3 (Corm - 3) On Platelet Adhesion To Human Brain Microvascular Endothelial Cells, Najat S. El-Farra Aug 2021

Effect Of Carbon Monoxide Releasing Molecule 3 (Corm - 3) On Platelet Adhesion To Human Brain Microvascular Endothelial Cells, Najat S. El-Farra

Undergraduate Student Research Internships Conference

Sepsis is characterized by the widespread inflammation of the body. Systemic inflammation activates and recruits inflammatory cells (e.g., leukocytes) and platelets to the affected organs.

During these inflammatory conditions, human brain microvascular endothelial cells (hBMEC) and platelets both upregulate adhesive molecules rendering platelets to adhere to hBMEC.

Although carbon monoxide is thought of as a toxic molecule to many, previous work shows its anti-inflammatory properties. Evidence has shown carbon monoxide-releasing molecules (e.g., CORM-3; that release small, non-toxic amounts of CO) can combat the effects of severe inflammation in several in vivo animal model.

In this current study, we are looking …