Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Medicine and Health Sciences

Effects Of Dimerization On The Deacylase Activities Of Human Sirt2., Jie Yang, Nathan I Nicely, Brian P Weiser Dec 2023

Effects Of Dimerization On The Deacylase Activities Of Human Sirt2., Jie Yang, Nathan I Nicely, Brian P Weiser

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Human sirtuin isoform 2 (SIRT2) is an NAD+-dependent enzyme that functions as a lysine deacetylase and defatty-acylase. Here, we report that SIRT2 readily dimerizes in solution and in cells and that dimerization affects its ability to remove different acyl modifications from substrates. Dimerization of recombinant SIRT2 was revealed with analytical size exclusion chromatography and chemical cross-linking. Dimerized SIRT2 dissociates into monomers upon binding long fatty acylated substrates (decanoyl-, dodecanoyl-, and myristoyl-lysine). However, we did not observe dissociation of dimeric SIRT2 in the presence of acetyl-lysine. Analysis of X-ray crystal structures led us to discover a SIRT2 double mutant (Q142A/E340A) that …


Age- And Sex-Specific Reference Values Of Biventricular Flow Components And Kinetic Energy By 4d Flow Cardiovascular Magnetic Resonance In Healthy Subjects, Xiaodan Zhao, Ru-San Tan, Pankaj Garg, Ping Chai, Shuang Leng, Jennifer Ann Bryant, Lynette L S Teo, Tee Joo Yeo, Marielle V Fortier, Ting Ting Low, Ching Ching Ong, Shuo Zhang, Rob J Van Der Geest, John C Allen, Teng Hong Tan, James W Yip, Ju Le Tan, Marina Hughes, Sven Plein, Jos J M Westenberg, Liang Zhong Sep 2023

Age- And Sex-Specific Reference Values Of Biventricular Flow Components And Kinetic Energy By 4d Flow Cardiovascular Magnetic Resonance In Healthy Subjects, Xiaodan Zhao, Ru-San Tan, Pankaj Garg, Ping Chai, Shuang Leng, Jennifer Ann Bryant, Lynette L S Teo, Tee Joo Yeo, Marielle V Fortier, Ting Ting Low, Ching Ching Ong, Shuo Zhang, Rob J Van Der Geest, John C Allen, Teng Hong Tan, James W Yip, Ju Le Tan, Marina Hughes, Sven Plein, Jos J M Westenberg, Liang Zhong

Journal Articles

BACKGROUND: Advances in four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) have allowed quantification of left ventricular (LV) and right ventricular (RV) blood flow. We aimed to (1) investigate age and sex differences of 4D flow CMR-derived LV and RV relative flow components and kinetic energy (KE) parameters indexed to end-diastolic volume (KEi

METHODS: We performed 4D flow analysis in 163 healthy participants (42% female; mean age 43 ± 13 years) of a prospective registry study (NCT03217240) who were free of cardiovascular diseases. Relative flow components (direct flow, retained inflow, delayed ejection flow, residual volume) and multiple phasic KEi

RESULTS: …


Fan1 Removes Triplet Repeat Extrusions Via A Pcna- And Rfc-Dependent Mechanism, Ashutosh S. Phadte, Mayuri Bhatia, Hope Ebert, Haaris Abdullah, Essam Abed Elrazaq, Konstantin E. Komolov, Anna Pluciennik Aug 2023

Fan1 Removes Triplet Repeat Extrusions Via A Pcna- And Rfc-Dependent Mechanism, Ashutosh S. Phadte, Mayuri Bhatia, Hope Ebert, Haaris Abdullah, Essam Abed Elrazaq, Konstantin E. Komolov, Anna Pluciennik

Department of Biochemistry and Molecular Biology Faculty Papers

Human genome-wide association studies have identified FAN1 and several DNA mismatch repair (MMR) genes as modifiers of Huntington’s disease age of onset. In animal models, FAN1 prevents somatic expansion of CAG triplet repeats, whereas MMR proteins promote this process. To understand the molecular basis of these opposing effects, we evaluated FAN1 nuclease function on DNA extrahelical extrusions that represent key intermediates in triplet repeat expansion. Here, we describe a strand-directed, extrusion-provoked nuclease function of FAN1 that is activated by RFC, PCNA, and ATP at physiological ionic strength. Activation of FAN1 in this manner results in DNA cleavage in the vicinity …


A Computationally Designed Ace2 Decoy Has Broad Efficacy Against Sars-Cov-2 Omicron Variants And Related Viruses In Vitro And In Vivo, Brandon Havranek, Graeme Walker Lindsey, Yusuke Higuchi, Yumi Itoh, Tatsuya Suzuki, Toru Okamoto, Atsushi Hoshino, Erik Procko, Shahidul M. Islam May 2023

A Computationally Designed Ace2 Decoy Has Broad Efficacy Against Sars-Cov-2 Omicron Variants And Related Viruses In Vitro And In Vivo, Brandon Havranek, Graeme Walker Lindsey, Yusuke Higuchi, Yumi Itoh, Tatsuya Suzuki, Toru Okamoto, Atsushi Hoshino, Erik Procko, Shahidul M. Islam

SKMC Student Presentations and Publications

SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range …


The Wnt Pathway Protein Dvl1 Targets Somatostatin Receptor 2 For Lysosome-Dependent Degradation, Heather S Carr, Yan Zuo, Jeffrey A Frost May 2023

The Wnt Pathway Protein Dvl1 Targets Somatostatin Receptor 2 For Lysosome-Dependent Degradation, Heather S Carr, Yan Zuo, Jeffrey A Frost

Journal Articles

The Somatostatin receptor 2 (Sstr2) is a heterotrimeric G protein-coupled receptor that is highly expressed in neuroendocrine tumors and is a common pharmacological target for intervention. Unfortunately, not all neuroendocrine tumors express Sstr2, and Sstr2 expression can be downregulated with prolonged agonist use. Sstr2 is rapidly internalized following agonist stimulation and, in the short term, is quantitatively recycled back to the plasma membrane. However, mechanisms controlling steady state expression of Sstr2 in the absence of agonist are less well described. Here, we show that Sstr2 interacts with the Wnt pathway protein Dvl1 in a ligand-independent manner to target Sstr2 for …


Candidate Variants In Dna Replication And Repair Genes In Early-Onset Renal Cell Carcinoma Patients Referred For Germline Testing, Elena V. Demidova, Ilya G. Serebriiskii, Ramilia Vlasenkova, Simon Kelow, Mark D. Andrake, Tiffiney R. Hartman, Tatiana Kent, James Virtucio, Gail L. Rosen, Richard T. Pomerantz, Roland L. Dunbrack, Erica A. Golemis, Michael J. Hall, David Y.T. Chen, Mary B. Daly, Sanjeevani Arora Apr 2023

Candidate Variants In Dna Replication And Repair Genes In Early-Onset Renal Cell Carcinoma Patients Referred For Germline Testing, Elena V. Demidova, Ilya G. Serebriiskii, Ramilia Vlasenkova, Simon Kelow, Mark D. Andrake, Tiffiney R. Hartman, Tatiana Kent, James Virtucio, Gail L. Rosen, Richard T. Pomerantz, Roland L. Dunbrack, Erica A. Golemis, Michael J. Hall, David Y.T. Chen, Mary B. Daly, Sanjeevani Arora

Department of Biochemistry and Molecular Biology Faculty Papers

Background: Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants (PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their genetic risk remains undefined.

Methods: Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic counseling and tested negative for PGVs in RCC familial syndrome genes.

Results: Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline variants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in peripheral blood monocytes (PBMCs) significantly elevated numbers of …


Substrate Electronics Dominate The Rate Of Reductive Dehalogenation Promoted By The Flavin-Dependent Iodotyrosine Deiodinase, Anton Kozyryev, Daniel Lemen, Jessica Dunn, Steven E Rokita Apr 2023

Substrate Electronics Dominate The Rate Of Reductive Dehalogenation Promoted By The Flavin-Dependent Iodotyrosine Deiodinase, Anton Kozyryev, Daniel Lemen, Jessica Dunn, Steven E Rokita

Journal Articles

Iodotyrosine deiodinase (IYD) is unusual in its reliance on flavin to promote reductive dehalogenation of halotyrosines under aerobic conditions. Applications of this activity can be envisioned for bioremediation, but expansion of its specificity requires an understanding of the mechanistic steps that limit the rate of turnover. Key processes capable of controlling steady-state turnover have now been evaluated and described in this study. While proton transfer is necessary for converting the electron-rich substrate into an electrophilic intermediate suitable for reduction, kinetic solvent deuterium isotope effects suggest that this process does not contribute to the overall efficiency of catalysis under neutral conditions. …


Harnessing Transcriptionally Driven Chromosomal Instability Adaptation To Target Therapy-Refractory Lethal Prostate Cancer., Brittiny Dhital, Sandra Santasusagna, Perumalraja Kirthika, Michael Xu, Peiyao Li, Marc Carceles-Cordon, Rajesh K. Soni, Zhuoning Li, Ronald C. Hendrickson, Matthew J. Schiewer, William K. Kelly, Cora N. Sternberg, Jun Luo, Amaia Lujambio, Carlos Cordon-Cardo, Monica Alvarez-Fernandez, Marcos Malumbres, Haojie Huang, Adam Ertel, Josep Domingo-Domenech, Veronica Rodriguez-Bravo Feb 2023

Harnessing Transcriptionally Driven Chromosomal Instability Adaptation To Target Therapy-Refractory Lethal Prostate Cancer., Brittiny Dhital, Sandra Santasusagna, Perumalraja Kirthika, Michael Xu, Peiyao Li, Marc Carceles-Cordon, Rajesh K. Soni, Zhuoning Li, Ronald C. Hendrickson, Matthew J. Schiewer, William K. Kelly, Cora N. Sternberg, Jun Luo, Amaia Lujambio, Carlos Cordon-Cardo, Monica Alvarez-Fernandez, Marcos Malumbres, Haojie Huang, Adam Ertel, Josep Domingo-Domenech, Veronica Rodriguez-Bravo

Kimmel Cancer Center Papers, Presentations, and Grand Rounds

Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and …


Semi-Quantitative Detection Of Pseudouridine Modifications And Type I/Ii I/Ii Hypermodifications In Human Mrnas Using Direct Long-Read Sequencing, Sepideh Tavakoli, Mohammad Nabizadeh, Amr Makhamreh, Howard Gamper, Caroline A Mccormick, Neda K Rezapour, Ya-Ming Hou, Meni Wanunu, Sara H Rouhanifard Jan 2023

Semi-Quantitative Detection Of Pseudouridine Modifications And Type I/Ii I/Ii Hypermodifications In Human Mrnas Using Direct Long-Read Sequencing, Sepideh Tavakoli, Mohammad Nabizadeh, Amr Makhamreh, Howard Gamper, Caroline A Mccormick, Neda K Rezapour, Ya-Ming Hou, Meni Wanunu, Sara H Rouhanifard

Department of Biochemistry and Molecular Biology Faculty Papers

Here, we develop and apply a semi-quantitative method for the high-confidence identification of pseudouridylated sites on mammalian mRNAs via direct long-read nanopore sequencing. A comparative analysis of a modification-free transcriptome reveals that the depth of coverage and specific k-mer sequences are critical parameters for accurate basecalling. By adjusting these parameters for high-confidence U-to-C basecalling errors, we identify many known sites of pseudouridylation and uncover previously unreported uridine-modified sites, many of which fall in k-mers that are known targets of pseudouridine synthases. Identified sites are validated using 1000-mer synthetic RNA controls bearing a single pseudouridine in the center position, demonstrating systematic …


Microrna-1 Attenuates The Growth And Metastasis Of Small Cell Lung Cancer Through Cxcr4/Foxm1/Rrm2 Axis, Parvez Khan, Jawed A. Siddiqui, Prakash Kshirsagar Dr., Ramakanth Chirravuri Venkata, Shailendra K. Maurya, Tamara Mirzapoiazova, Naveenkumar Perumal, Sanjib Chaudhary, Ranjana K. Kanchan, Mahek Fatima, Md Arafat Khan, Asad Ur Rehman, Imayavaramban Lakshmanan, Sidharth Mahapatra, Geoffrey A. Talmon, Prakash Kulkarni, Apar Kishor Ganti, Maneesh Jain, Ravi Salgia, Surinder K. Batra, Mohd W. Nasser Jan 2023

Microrna-1 Attenuates The Growth And Metastasis Of Small Cell Lung Cancer Through Cxcr4/Foxm1/Rrm2 Axis, Parvez Khan, Jawed A. Siddiqui, Prakash Kshirsagar Dr., Ramakanth Chirravuri Venkata, Shailendra K. Maurya, Tamara Mirzapoiazova, Naveenkumar Perumal, Sanjib Chaudhary, Ranjana K. Kanchan, Mahek Fatima, Md Arafat Khan, Asad Ur Rehman, Imayavaramban Lakshmanan, Sidharth Mahapatra, Geoffrey A. Talmon, Prakash Kulkarni, Apar Kishor Ganti, Maneesh Jain, Ravi Salgia, Surinder K. Batra, Mohd W. Nasser

Journal Articles: Biochemistry & Molecular Biology

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive lung cancer subtype that is associated with high recurrence and poor prognosis. Due to lack of potential drug targets, SCLC patients have few therapeutic options. MicroRNAs (miRNAs) provide an interesting repertoire of therapeutic molecules; however, the identification of miRNAs regulating SCLC growth and metastasis and their precise regulatory mechanisms are not well understood.

METHODS: To identify novel miRNAs regulating SCLC, we performed miRNA-sequencing from donor/patient serum samples and analyzed the bulk RNA-sequencing data from the tumors of SCLC patients. Further, we developed a nanotechnology-based, highly sensitive method to detect microRNA-1 (miR-1, …


Gpcrs And Fibroblast Heterogeneity In Fibroblast-Associated Diseases, Nidhi V. Dwivedi, Souvik Datta, Karim El-Kersh, Ruxana Sadikot Md, Mrcp, Apar Kishor Ganti, Surinder K. Batra, Maneesh Jain Jan 2023

Gpcrs And Fibroblast Heterogeneity In Fibroblast-Associated Diseases, Nidhi V. Dwivedi, Souvik Datta, Karim El-Kersh, Ruxana Sadikot Md, Mrcp, Apar Kishor Ganti, Surinder K. Batra, Maneesh Jain

Journal Articles: Biochemistry & Molecular Biology

G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic …


Molecular And Metabolic Regulation Of Immunosuppression In Metastatic Pancreatic Ductal Adenocarcinoma, Shailendra K. Gautam, Surinder K. Batra, Maneesh Jain Jan 2023

Molecular And Metabolic Regulation Of Immunosuppression In Metastatic Pancreatic Ductal Adenocarcinoma, Shailendra K. Gautam, Surinder K. Batra, Maneesh Jain

Journal Articles: Biochemistry & Molecular Biology

Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, …


Immunotherapy: An Emerging Modality To Checkmate Brain Metastasis, Aatiya Ahmad, Parvez Khan, Asad Ur Rehman, Surinder K. Batra, Mohd W. Nasser Jan 2023

Immunotherapy: An Emerging Modality To Checkmate Brain Metastasis, Aatiya Ahmad, Parvez Khan, Asad Ur Rehman, Surinder K. Batra, Mohd W. Nasser

Journal Articles: Biochemistry & Molecular Biology

The diagnosis of brain metastasis (BrM) has historically been a dooming diagnosis that is nothing less than a death sentence, with few treatment options for palliation or prolonging life. Among the few treatment options available, brain radiotherapy (RT) and surgical resection have been the backbone of therapy. Within the past couple of years, immunotherapy (IT), alone and in combination with traditional treatments, has emerged as a reckoning force to combat the spread of BrM and shrink tumor burden. This review compiles recent reports describing the potential role of IT in the treatment of BrM in various cancers. It also examines …


Effects Of Atrazine Exposure On Human Bone Marrow-Derived Mesenchymal Stromal Cells Assessed By Combinatorial Assay Matrix, Crystal C Uwazie, Bonnie M Pirlot, Tyler U Faircloth, Mihir Patel, Rhett N Parr, Halie M Zastre, Peiman Hematti, Guido Moll, Devi Rajan, Raghavan Chinnadurai Jan 2023

Effects Of Atrazine Exposure On Human Bone Marrow-Derived Mesenchymal Stromal Cells Assessed By Combinatorial Assay Matrix, Crystal C Uwazie, Bonnie M Pirlot, Tyler U Faircloth, Mihir Patel, Rhett N Parr, Halie M Zastre, Peiman Hematti, Guido Moll, Devi Rajan, Raghavan Chinnadurai

Journal Articles

INTRODUCTION: Mesenchymal Stromal/Stem cells (MSCs) are an essential component of the regenerative and immunoregulatory stem cell compartment of the human body and thus of major importance in human physiology. The MSCs elicit their beneficial properties through a multitude of complementary mechanisms, which makes it challenging to assess their phenotype and function in environmental toxicity screening. We here employed the novel combinatorial assays matrix approach/technology to profile the MSC response to the herbicide Atrazine, which is a common environmental xenobiotic, that is in widespread agricultural use in the US and other countries, but banned in the EU. Our here presented approach …