Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry

2004

Cell line

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Binding Between The Niemann–Pick C1 Protein And A Photoactivatable Cholesterol Analog Requires A Functional Sterol-Sensing Domain, Nobutaka Ohgami, Dennis C. Ko, Matthew Thomas, Matthew P. Scott, Catherine C. Y. Chang, Ta-Yuan Chang Aug 2004

Binding Between The Niemann–Pick C1 Protein And A Photoactivatable Cholesterol Analog Requires A Functional Sterol-Sensing Domain, Nobutaka Ohgami, Dennis C. Ko, Matthew Thomas, Matthew P. Scott, Catherine C. Y. Chang, Ta-Yuan Chang

Dartmouth Scholarship

Niemann-Pick type C (NPC) 1 protein plays important roles in moving cholesterol and other lipids out of late endosomes by means of vesicular trafficking, but it is not known whether NPC1 directly interacts with cholesterol. We performed photoaffinity labeling of intact cells expressing fluorescent protein (FP)-tagged NPC1 by using [(3)H]7,7-azocholestanol ([(3)H]AC). After immunoprecipitation, (3)H-labeled NPC1-GFP appeared as a single band. Including excess unlabeled sterol to the labeling reaction significantly diminished the labeling. Altering the NPC1 sterol-sensing domain (SSD) with loss-of-function mutations (P692S and Y635C) severely reduced the extent of labeling. To further demonstrate the specificity of labeling, we show that …


The Tumor Suppressor Lkb1 Kinase Directly Activates Amp-Activated Kinase And Regulates Apoptosis In Response To Energy Stress, Reuben J. Shaw, Monica Kosmatka, Nabeel Bardeesy, Rebecca L. Hurley, Lee A. Witters, Ronald A. Depinho, Lewis C. Cantley Mar 2004

The Tumor Suppressor Lkb1 Kinase Directly Activates Amp-Activated Kinase And Regulates Apoptosis In Response To Energy Stress, Reuben J. Shaw, Monica Kosmatka, Nabeel Bardeesy, Rebecca L. Hurley, Lee A. Witters, Ronald A. Depinho, Lewis C. Cantley

Dartmouth Scholarship

AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status found in all eukaryotic cells. AMPK is activated by stimuli that increase the cellular AMP/ATP ratio. Essential to activation of AMPK is its phosphorylation at Thr-172 by an upstream kinase, AMPKK, whose identity in mammalian cells has remained elusive. Here we present biochemical and genetic evidence indicating that the LKB1 serine/threonine kinase, the gene inactivated in the Peutz-Jeghers familial cancer syndrome, is the dominant regulator of AMPK activation in several mammalian cell types. We show that LKB1 directly phosphorylates Thr-172 of AMPKalpha in vitro and activates its …