Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry

Department of Biochemistry and Molecular Biology Faculty Papers

Thomas Jefferson University

Articles 1 - 13 of 13

Full-Text Articles in Medicine and Health Sciences

An Insulator Blocks Access To Enhancers By An Illegitimate Promoter, Preventing Repression By Transcriptional Interference., Miki Fujioka, Anastasiya Nezdyur, James B. Jaynes Apr 2021

An Insulator Blocks Access To Enhancers By An Illegitimate Promoter, Preventing Repression By Transcriptional Interference., Miki Fujioka, Anastasiya Nezdyur, James B. Jaynes

Department of Biochemistry and Molecular Biology Faculty Papers

Several distinct activities and functions have been described for chromatin insulators, which separate genes along chromosomes into functional units. Here, we describe a novel mechanism of functional separation whereby an insulator prevents gene repression. When the homie insulator is deleted from the end of a Drosophila even skipped (eve) locus, a flanking P-element promoter is activated in a partial eve pattern, causing expression driven by enhancers in the 3' region to be repressed. The mechanism involves transcriptional read-through from the flanking promoter. This conclusion is based on the following. Read-through driven by a heterologous enhancer is sufficient to repress, even …


Three-Dimensional Structure Of Human Cyclooxygenase (Hcox)-1., Morena Miciaccia, Benny Danilo Belviso, Mariaclara Iaselli, Gino Cingolani, Savina Ferorelli, Marianna Cappellari, Paola Loguercio Polosa, Maria Grazia Perrone, Rocco Caliandro, Antonio Scilimati Feb 2021

Three-Dimensional Structure Of Human Cyclooxygenase (Hcox)-1., Morena Miciaccia, Benny Danilo Belviso, Mariaclara Iaselli, Gino Cingolani, Savina Ferorelli, Marianna Cappellari, Paola Loguercio Polosa, Maria Grazia Perrone, Rocco Caliandro, Antonio Scilimati

Department of Biochemistry and Molecular Biology Faculty Papers

The beneficial effects of Cyclooxygenases (COX) inhibitors on human health have been known for thousands of years. Nevertheless, COXs, particularly COX-1, have been linked to a plethora of human diseases such as cancer, heart failure, neurological and neurodegenerative diseases only recently. COXs catalyze the first step in the biosynthesis of prostaglandins (PGs) and are among the most important mediators of inflammation. All published structural work on COX-1 deals with the ovine isoenzyme, which is easier to produce in milligram-quantities than the human enzyme and crystallizes readily. Here, we report the long-sought structure of the human cyclooxygenase-1 (hCOX-1) that we refined …


Possible Steps Of Complete Disassembly Of Post-Termination Complex By Yeast Eef3 Deduced From Inhibition By Translocation Inhibitors., Shinya Kurata, Ben Shen, Jun O Liu, Nono Takeuchi, Akira Kaji, Hideko Kaji Oct 2012

Possible Steps Of Complete Disassembly Of Post-Termination Complex By Yeast Eef3 Deduced From Inhibition By Translocation Inhibitors., Shinya Kurata, Ben Shen, Jun O Liu, Nono Takeuchi, Akira Kaji, Hideko Kaji

Department of Biochemistry and Molecular Biology Faculty Papers

Ribosomes, after one round of translation, must be recycled so that the next round of translation can occur. Complete disassembly of post-termination ribosomal complex (PoTC) in yeast for the recycling consists of three reactions: release of tRNA, release of mRNA and splitting of ribosomes, catalyzed by eukaryotic elongation factor 3 (eEF3) and ATP. Here, we show that translocation inhibitors cycloheximide and lactimidomycin inhibited all three reactions. Cycloheximide is a non-competitive inhibitor of both eEF3 and ATP. The inhibition was observed regardless of the way PoTC was prepared with either release factors or puromycin. Paromomycin not only inhibited all three reactions …


Global Cellular Regulation Including Cardiac Function By Post-Translational Protein Arginylation., Hideko Kaji, Akira Kaji Sep 2012

Global Cellular Regulation Including Cardiac Function By Post-Translational Protein Arginylation., Hideko Kaji, Akira Kaji

Department of Biochemistry and Molecular Biology Faculty Papers

In this issue a very significant contribution to cardiology describing critical roles of ATE1 appears by Kurosaka et al. [1]. In view of this paper, as the discoverers of ATE1, we have been asked to contribute an article (editorial) regarding ATE1 (enzyme which transfers arginine from arginyl tRNA to protein acceptors). This short article consists of three sections: 1) a historical anecdote describing how ATE1 was discovered; 2) its possible role in aging and cellular transformation, and most importantly; 3) its role in the development and maintenance of cardiac activity. The last section has direct bearing to the Kurosaka …


Testosterone Treatment Fails To Accelerate Disease In A Transgenic Mouse Model Of Spinal And Bulbar Muscular Atrophy., Erica S Chevalier-Larsen, Diane E Merry Jan 2012

Testosterone Treatment Fails To Accelerate Disease In A Transgenic Mouse Model Of Spinal And Bulbar Muscular Atrophy., Erica S Chevalier-Larsen, Diane E Merry

Department of Biochemistry and Molecular Biology Faculty Papers

Evidence from multiple animal models demonstrates that testosterone plays a crucial role in the progression of symptoms in spinal and bulbar muscular atrophy (SBMA), a condition that results in neurodegeneration and muscle atrophy in affected men. Mice bearing a transgene encoding a human androgen receptor (AR) that contains a stretch of 112 glutamines (expanded polyglutamine tract; AR112Q mice) reproduce several aspects of the human disease. We treated transgenic male AR112Q mice with testosterone for 6 months. Surprisingly, testosterone treatment of AR112Q males did not exacerbate the disease. Although transgenic AR112Q males exhibited functional deficits when compared with non-transgenics, long-term testosterone …


Phosphorylation Meets Nuclear Import: A Review., Jonathan D Nardozzi, Kaylen Lott, Gino Cingolani Dec 2010

Phosphorylation Meets Nuclear Import: A Review., Jonathan D Nardozzi, Kaylen Lott, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

Phosphorylation is the most common and pleiotropic modification in biology, which plays a vital role in regulating and finely tuning a multitude of biological pathways. Transport across the nuclear envelope is also an essential cellular function and is intimately linked to many degeneration processes that lead to disease. It is therefore not surprising that phosphorylation of cargos trafficking between the cytoplasm and nucleus is emerging as an important step to regulate nuclear availability, which directly affects gene expression, cell growth and proliferation. However, the literature on phosphorylation of nucleocytoplasmic trafficking cargos is often confusing. Phosphorylation, and its mirror process dephosphorylation, …


Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima Dec 2009

Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima

Department of Biochemistry and Molecular Biology Faculty Papers

The amyloid-beta 42 (Abeta42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial …


Regulation Of Energy Stores And Feeding By Neuronal And Peripheral Creb Activity In Drosophila., Koichi Iijima, Lijuan Zhao, Christopher Shenton, Kanae Iijima-Ando Dec 2009

Regulation Of Energy Stores And Feeding By Neuronal And Peripheral Creb Activity In Drosophila., Koichi Iijima, Lijuan Zhao, Christopher Shenton, Kanae Iijima-Ando

Department of Biochemistry and Molecular Biology Faculty Papers

The cAMP-responsive transcription factor CREB functions in adipose tissue and liver to regulate glycogen and lipid metabolism in mammals. While Drosophila has a homolog of mammalian CREB, dCREB2, its role in energy metabolism is not fully understood. Using tissue-specific expression of a dominant-negative form of CREB (DN-CREB), we have examined the effect of blocking CREB activity in neurons and in the fat body, the primary energy storage depot with functions of adipose tissue and the liver in flies, on energy balance, stress resistance and feeding behavior. We found that disruption of CREB function in neurons reduced glycogen and lipid stores …


Asymmetric Deactivation Of Hiv-1 Gp41 Following Fusion Inhibitor Binding., Kristen M Kahle, H Kirby Steger, Michael J Root Nov 2009

Asymmetric Deactivation Of Hiv-1 Gp41 Following Fusion Inhibitor Binding., Kristen M Kahle, H Kirby Steger, Michael J Root

Department of Biochemistry and Molecular Biology Faculty Papers

Both equilibrium and nonequilibrium factors influence the efficacy of pharmaceutical agents that target intermediate states of biochemical reactions. We explored the intermediate state inhibition of gp41, part of the HIV-1 envelope glycoprotein complex (Env) that promotes viral entry through membrane fusion. This process involves a series of gp41 conformational changes coordinated by Env interactions with cellular CD4 and a chemokine receptor. In a kinetic window between CD4 binding and membrane fusion, the N- and C-terminal regions of the gp41 ectodomain become transiently susceptible to inhibitors that disrupt Env structural transitions. In this study, we sought to identify kinetic parameters that …


Interaction With Lc8 Is Required For Pak1 Nuclear Import And Is Indispensable For Zebrafish Development., Christine M Lightcap, Gabor Kari, Luis E Arias-Romero, Jonathan Chernoff, Ulrich Rodeck, John C Williams Jun 2009

Interaction With Lc8 Is Required For Pak1 Nuclear Import And Is Indispensable For Zebrafish Development., Christine M Lightcap, Gabor Kari, Luis E Arias-Romero, Jonathan Chernoff, Ulrich Rodeck, John C Williams

Department of Biochemistry and Molecular Biology Faculty Papers

Pak1 (p21 activated kinase 1) is a serine/threonine kinase implicated in regulation of cell motility and survival and in malignant transformation of mammary epithelial cells. In addition, the dynein light chain, LC8, has been described to cooperate with Pak1 in malignant transformation of breast cancer cells. Pak1 itself may aid breast cancer development by phosphorylating nuclear proteins, including estrogen receptor alpha. Recently, we showed that the LC8 binding site on Pak1 is adjacent to the nuclear localization sequence (NLS) required for Pak1 nuclear import. Here, we demonstrate that the LC8-Pak1 interaction is necessary for epidermal growth factor (EGF)-induced nuclear import …


Neutralization Of Botulinum Neurotoxin By A Human Monoclonal Antibody Specific For The Catalytic Light Chain., Sharad P Adekar, Tsuyoshi Takahashi, R Mark Jones, Fetweh H Al-Saleem, Denise M Ancharski, Michael J Root, B P Kapadnis, Lance L Simpson, Scott K Dessain Aug 2008

Neutralization Of Botulinum Neurotoxin By A Human Monoclonal Antibody Specific For The Catalytic Light Chain., Sharad P Adekar, Tsuyoshi Takahashi, R Mark Jones, Fetweh H Al-Saleem, Denise M Ancharski, Michael J Root, B P Kapadnis, Lance L Simpson, Scott K Dessain

Department of Biochemistry and Molecular Biology Faculty Papers

BACKGROUND: Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored.

METHODS AND FINDINGS: We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for …


Abeta42 Mutants With Different Aggregation Profiles Induce Distinct Pathologies In Drosophila., Koichi Iijima, Hsueh-Cheng Chiang, Stephen A Hearn, Inessa Hakker, Anthony Gatt, Christopher Shenton, Linda Granger, Amy Leung, Kanae Iijima-Ando, Yi Zhong Feb 2008

Abeta42 Mutants With Different Aggregation Profiles Induce Distinct Pathologies In Drosophila., Koichi Iijima, Hsueh-Cheng Chiang, Stephen A Hearn, Inessa Hakker, Anthony Gatt, Christopher Shenton, Linda Granger, Amy Leung, Kanae Iijima-Ando, Yi Zhong

Department of Biochemistry and Molecular Biology Faculty Papers

Aggregation of the amyloid-beta-42 (Abeta42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Abeta aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Abeta can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Abeta42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Abeta42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Abeta42Arc) and an artificial mutation (Abeta42art) that …


Multiple Domains In Siz Sumo Ligases Contribute To Substrate Selectivity., Alison Reindle, Irina Belichenko, Gwendolyn R Bylebyl, Xiaole L Chen, Nishant Gandhi, Erica S Johnson Nov 2006

Multiple Domains In Siz Sumo Ligases Contribute To Substrate Selectivity., Alison Reindle, Irina Belichenko, Gwendolyn R Bylebyl, Xiaole L Chen, Nishant Gandhi, Erica S Johnson

Department of Biochemistry and Molecular Biology Faculty Papers

Saccharomyces cerevisiae contains two Siz/PIAS SUMO E3 ligases, Siz1 and Siz2/Nfi1, and one other known ligase, Mms21. Although ubiquitin ligases are highly substrate-specific, the degree to which SUMO ligases target distinct sets of substrates is unknown. Here we show that although Siz1 and Siz2 each have unique substrates in vivo, sumoylation of many substrates can be stimulated by either protein. Furthermore, in the absence of both Siz proteins, many of the same substrates are still sumoylated at low levels. Some of this residual sumoylation depends on MMS21. Siz1 targets its unique substrates through at least two distinct domains. Sumoylation of …