Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Growth In A Biofilm Sensitizes Cutibacterium Acnes To Nanosecond Pulsed Electric Fields, Asia Poudel, Adenrele Oludiran, Esin B. Sözer, Maura Casciola, Erin B. Purcell, Claudia Muratori Jan 2021

Growth In A Biofilm Sensitizes Cutibacterium Acnes To Nanosecond Pulsed Electric Fields, Asia Poudel, Adenrele Oludiran, Esin B. Sözer, Maura Casciola, Erin B. Purcell, Claudia Muratori

Bioelectrics Publications

The Gram-positive anaerobic bacterium Cutibacterium acnes (C. acnes) is a commensal of the human skin, but also an opportunistic pathogen that contributes to the pathophysiology of the skin disease acne vulgaris. C. acnes can form biofilms; cells in biofilms are more resilient to antimicrobial stresses. Acne therapeutic options such as topical or systemic antimicrobial treatments often show incomplete responses. In this study we measured the efficacy of nanosecond pulsed electric fields (nsPEF), a new promising cell and tissue ablation technology, to inactivate C. acnes. Our results show that all tested nsPEF doses (250 to 2000 pulses, 280 ns pulses, …


Targeting Ovarian Cancer And Endothelium With An Allosteric Ptp4a3 Phosphatase Inhibitor, Kelley E. Mcqueeney, Joseph M. Salamoun, James C. Burnett, Nektarios Barabutis, Paula Pekic, Sophie L. Lewandowski, Danielle C. Llaneza, Robert Cornelison, Yunpeng Bai, Zhong-Yin Zhang, John D. Catravas Jan 2018

Targeting Ovarian Cancer And Endothelium With An Allosteric Ptp4a3 Phosphatase Inhibitor, Kelley E. Mcqueeney, Joseph M. Salamoun, James C. Burnett, Nektarios Barabutis, Paula Pekic, Sophie L. Lewandowski, Danielle C. Llaneza, Robert Cornelison, Yunpeng Bai, Zhong-Yin Zhang, John D. Catravas

Bioelectrics Publications

Overexpression of protein tyrosine phosphatase PTP4A oncoproteins is common in many human cancers and is associated with poor patient prognosis and survival. We observed elevated levels of PTP4A3 phosphatase in 79% of human ovarian tumor samples, with significant overexpression in tumor endothelium and pericytes. Furthermore, PTP4A phosphatases appear to regulate several key malignant processes, such as invasion, migration, and angiogenesis, suggesting a pivotal regulatory role in cancer and endothelial signaling pathways. While phosphatases are attractive therapeutic targets, they have been poorly investigated because of a lack of potent and selective chemical probes. In this study, we disclose that a potent, …