Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry

Thomas Jefferson University

Series

2022

Mice

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Neuromuscular Junction Pathology Is Correlated With Differential Motor Unit Vulnerability In Spinal And Bulbar Muscular Atrophy, Elana Molotsky, Y Liu, Andrew P Lieberman, Diane E Merry Jul 2022

Neuromuscular Junction Pathology Is Correlated With Differential Motor Unit Vulnerability In Spinal And Bulbar Muscular Atrophy, Elana Molotsky, Y Liu, Andrew P Lieberman, Diane E Merry

Department of Biochemistry and Molecular Biology Faculty Papers

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, neuromuscular neurodegenerative disease for which there is no cure. The disease is characterized by a selective decrease in fast-muscle power (e.g., tongue pressure, grip strength) accompanied by a selective loss of fast-twitch muscle fibers. However, the relationship between neuromuscular junction (NMJ) pathology and fast-twitch motor unit vulnerability has yet to be explored. In this study, we used a cross-model comparison of two mouse models of SBMA to evaluate neuromuscular junction pathology, glycolytic-to-oxidative fiber-type switching, and cytoskeletal alterations in pre- and postsynaptic termini of tibialis anterior (TA), gastrocnemius, and soleus hindlimb muscles. …


A Periplasmic Cinched Protein Is Required For Siderophore Secretion And Virulence Of Mycobacterium Tuberculosis., Lei Zhang, James E Kent, Meredith Whitaker, David C Young, Dominik Herrmann, Alexander E Aleshin, Ying-Hui Ko, Gino Cingolani, Jamil S Saad, D Branch Moody, Francesca M Marassi, Sabine Ehrt, Michael Niederweis Apr 2022

A Periplasmic Cinched Protein Is Required For Siderophore Secretion And Virulence Of Mycobacterium Tuberculosis., Lei Zhang, James E Kent, Meredith Whitaker, David C Young, Dominik Herrmann, Alexander E Aleshin, Ying-Hui Ko, Gino Cingolani, Jamil S Saad, D Branch Moody, Francesca M Marassi, Sabine Ehrt, Michael Niederweis

Department of Biochemistry and Molecular Biology Faculty Papers

Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating …