Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar Aug 2017

A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar

Radiation Medicine Faculty Publications

Primary tumors are often heterogeneous, composed of therapy-sensitive and emerging therapy-resistant cancer cells. Interestingly, treatment of therapy-sensitive tumors in heterogeneous tumor microenvironments results in apoptosis of therapy-resistant tumors. In this study, we identify a prostate apoptosis response-4 (Par-4) amino-terminal fragment (PAF) that is released by diverse therapy-sensitive cancer cells following therapy-induced caspase cleavage of the tumor suppressor Par-4 protein. PAF caused apoptosis in cancer cells resistant to therapy and inhibited tumor growth. A VASA segment of Par-4 mediated its binding and degradation by the ubiquitin ligase Fbxo45, resulting in loss of Par-4 proapoptotic function. Conversely, PAF, which contains this VASA …


M2 Polarization Of Macrophages Facilitates Arsenic-Induced Cell Transformation Of Lung Epithelial Cells, Jiajun Cui, Wenhua Xu, Jian Chen, Hui Li, Lu Dai, Jacqueline A. Frank, Shaojun Peng, Siying Wang, Gang Chen Feb 2017

M2 Polarization Of Macrophages Facilitates Arsenic-Induced Cell Transformation Of Lung Epithelial Cells, Jiajun Cui, Wenhua Xu, Jian Chen, Hui Li, Lu Dai, Jacqueline A. Frank, Shaojun Peng, Siying Wang, Gang Chen

Pharmacology and Nutritional Sciences Faculty Publications

The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with …


Inducible Nitric Oxide Synthase (Inos) Is A Novel Negative Regulator Of Hematopoietic Stem/Progenitor Cell Trafficking, Mateusz Adamiak, Ahmed Abdelbaset-Ismail, Joseph B. Moore Iv, J. Zhao, Ahmed Abdel-Latif, Marcin Wysoczynski, Mariusz Z. Ratajczak Feb 2017

Inducible Nitric Oxide Synthase (Inos) Is A Novel Negative Regulator Of Hematopoietic Stem/Progenitor Cell Trafficking, Mateusz Adamiak, Ahmed Abdelbaset-Ismail, Joseph B. Moore Iv, J. Zhao, Ahmed Abdel-Latif, Marcin Wysoczynski, Mariusz Z. Ratajczak

Internal Medicine Faculty Publications

Nitric oxide (NO) is a gaseous free radical molecule involved in several biological processes related to inflammation, tissue damage, and infections. Based on reports that NO inhibits migration of granulocytes and monocytes, we became interested in the role of inducible NO synthetase (iNOS) in pharmacological mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood (PB). To address the role of NO in HSPC trafficking, we upregulated or downregulated iNOS expression in hematopoietic cell lines. Next, we performed mobilization studies in iNOS−/− mice and evaluated engraftment of iNOS−/− HSPCs in wild type (control) animals. Our …