Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Medicine and Health Sciences

Therapeutic Treatment With The Anti-Inflammatory Drug Candidate Mw151 May Partially Reduce Memory Impairment And Normalizes Hippocampal Metabolic Markers In A Mouse Model Of Comorbid Amyloid And Vascular Pathology, David J. Braun, David K. Powell, Christopher J. Mclouth, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik Jan 2022

Therapeutic Treatment With The Anti-Inflammatory Drug Candidate Mw151 May Partially Reduce Memory Impairment And Normalizes Hippocampal Metabolic Markers In A Mouse Model Of Comorbid Amyloid And Vascular Pathology, David J. Braun, David K. Powell, Christopher J. Mclouth, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik

Neuroscience Faculty Publications

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, but therapeutic options are lacking. Despite long being able to effectively treat the ill-effects of pathology present in various rodent models of AD, translation of these strategies to the clinic has so far been disappointing. One potential contributor to this situation is the fact that the vast majority of AD patients have other dementia-contributing comorbid pathologies, the most common of which are vascular in nature. This situation is modeled relatively infrequently in basic AD research, and almost never in preclinical studies. As part of our efforts to develop …


Random Forest-Integrated Analysis In Ad And Late Brain Transcriptome-Wide Data To Identify Disease-Specific Gene Expression, Xinxing Wu, Chong Peng, Peter T. Nelson, Qiang Cheng Sep 2021

Random Forest-Integrated Analysis In Ad And Late Brain Transcriptome-Wide Data To Identify Disease-Specific Gene Expression, Xinxing Wu, Chong Peng, Peter T. Nelson, Qiang Cheng

Sanders-Brown Center on Aging Faculty Publications

Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects thinking, memory, and behavior. Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently identified common neurodegenerative disease that mimics the clinical symptoms of AD. The development of drugs to prevent or treat these neurodegenerative diseases has been slow, partly because the genes associated with these diseases are incompletely understood. A notable hindrance from data analysis perspective is that, usually, the clinical samples for patients and controls are highly imbalanced, thus rendering it challenging to apply most existing machine learning algorithms to directly analyze such datasets. Meeting this data analysis challenge is …


Editorial: Roles Of Sleep Disruption And Circadian Rhythm Alterations On Neurodegeneration And Alzheimer's Disease, Marilyn J. Duncan, Sigrid C. Veasey, Phyllis Zee Sep 2021

Editorial: Roles Of Sleep Disruption And Circadian Rhythm Alterations On Neurodegeneration And Alzheimer's Disease, Marilyn J. Duncan, Sigrid C. Veasey, Phyllis Zee

Neuroscience Faculty Publications

No abstract provided.


Analysis Of High-Risk Pedigrees Identifies 12 Candidate Variants For Alzheimer's Disease, Craig C. Teerlink, Justin B. Miller, Elizabeth L. Vance, Lyndsay A. Staley, Jeffrey Stevens, Justina P. Tavana, Matthew E. Cloward, Madeline L. Page, Louisa Dayton, Alzheimer's Disease Genetics Consortium, Lisa A. Cannon-Albright, John S. K. Kauwe Jun 2021

Analysis Of High-Risk Pedigrees Identifies 12 Candidate Variants For Alzheimer's Disease, Craig C. Teerlink, Justin B. Miller, Elizabeth L. Vance, Lyndsay A. Staley, Jeffrey Stevens, Justina P. Tavana, Matthew E. Cloward, Madeline L. Page, Louisa Dayton, Alzheimer's Disease Genetics Consortium, Lisa A. Cannon-Albright, John S. K. Kauwe

Institute for Biomedical Informatics Faculty Publications

INTRODUCTION: Analysis of sequence data in high-risk pedigrees is a powerful approach to detect rare predisposition variants.

METHODS: Rare, shared candidate predisposition variants were identified from exome sequencing 19 Alzheimer's disease (AD)-affected cousin pairs selected from high-risk pedigrees. Variants were further prioritized by risk association in various external datasets. Candidate variants emerging from these analyses were tested for co-segregation to additional affected relatives of the original sequenced pedigree members.

RESULTS: AD-affected high-risk cousin pairs contained 564 shared rare variants. Eleven variants spanning 10 genes were prioritized in external datasets: rs201665195 (ABCA7), and rs28933981 (TTR) were previously …


Ceramide Analog [18F]F-Hpa-12 Detects Sphingolipid Disbalance In The Brain Of Alzheimer’S Disease Transgenic Mice By Functioning As A Metabolic Probe, Simone M. Crivelli, Daan Van Kruining, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Andreas Paulus, Matthias Bauwens, Dusan Berkes, Helga E. De Vries, Monique T. Mulder, Jochen Walter, Etienne Waelkens, Rita Derua, Johannes V. Swinnen, Jonas Dehairs, Felix M. Mottaghy, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez Nov 2020

Ceramide Analog [18F]F-Hpa-12 Detects Sphingolipid Disbalance In The Brain Of Alzheimer’S Disease Transgenic Mice By Functioning As A Metabolic Probe, Simone M. Crivelli, Daan Van Kruining, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Andreas Paulus, Matthias Bauwens, Dusan Berkes, Helga E. De Vries, Monique T. Mulder, Jochen Walter, Etienne Waelkens, Rita Derua, Johannes V. Swinnen, Jonas Dehairs, Felix M. Mottaghy, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez

Physiology Faculty Publications

The metabolism of ceramides is deregulated in the brain of Alzheimer’s disease (AD) patients and is associated with apolipoprotein (APO) APOE4 and amyloid-β pathology. However, how the ceramide metabolism changes over time in AD, in vivo, remains unknown. Distribution and metabolism of [18F]F-HPA-12, a radio-fluorinated version of the ceramide analog N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide, was investigated in the brain of AD transgenic mouse models (FAD) on an APOE4 or APOE3 genetic background, by positron emission tomography and by gamma counter. We found that FAD mice displayed a higher uptake of [18F]F-HPA-12 in the brain, independently from the APOE4 …


Distribution Of Microglial Phenotypes As A Function Of Age And Alzheimer's Disease Neuropathology In The Brains Of People With Down Syndrome, Alessandra C. Martini, Alex M. Helman, Katie L. Mccarty, Ira T. Lott, Eric Doran, Frederick A. Schmitt, Elizabeth Head Oct 2020

Distribution Of Microglial Phenotypes As A Function Of Age And Alzheimer's Disease Neuropathology In The Brains Of People With Down Syndrome, Alessandra C. Martini, Alex M. Helman, Katie L. Mccarty, Ira T. Lott, Eric Doran, Frederick A. Schmitt, Elizabeth Head

Sanders-Brown Center on Aging Faculty Publications

Introduction: Microglial cells play an important role in the development of Alzheimer's disease (AD). People with Down syndrome (DS) inevitably develop AD neuropathology (DSAD) by 40 years of age. We characterized the distribution of different microglial phenotypes in the brains of people with DS and DSAD.

Methods: Autopsy tissue from the posterior cingulate cortex (PCC) from people with DS, DSAD, and neurotypical controls was immunostained with the microglial marker Iba1 to assess five microglia morphological types.

Results: Individuals with DS have more hypertrophic microglial cells in their white matter. In the gray matter, individuals with DSAD had significantly fewer ramified …


Effects Of The Dual Orexin Receptor Antagonist Dora-22 On Sleep In 5xfad Mice, Marilyn J. Duncan, Hannah Farlow, Chairtra Tirumalaraju, Do-Hyun Yun, Chanung Wang, James A. Howard, Madison N. Sanden, Bruce F. O'Hara, Kristen J. Mcquerry, Adam D. Bachstetter Jan 2019

Effects Of The Dual Orexin Receptor Antagonist Dora-22 On Sleep In 5xfad Mice, Marilyn J. Duncan, Hannah Farlow, Chairtra Tirumalaraju, Do-Hyun Yun, Chanung Wang, James A. Howard, Madison N. Sanden, Bruce F. O'Hara, Kristen J. Mcquerry, Adam D. Bachstetter

Neuroscience Faculty Publications

Introduction: Sleep disruption is a characteristic of Alzheimer's disease (AD) that may exacerbate disease progression. This study tested whether a dual orexin receptor antagonist (DORA) would enhance sleep and attenuate neuropathology, neuroinflammation, and cognitive deficits in an AD-relevant mouse model, 5XFAD.

Methods: Wild-type (C57Bl6/SJL) and 5XFAD mice received chronic treatment with vehicle or DORA-22. Piezoelectric recordings monitored sleep and spatial memory was assessed via spontaneous Y-maze alternations. Aβ plaques, Aβ levels, and neuroinflammatory markers were measured by immunohistochemistry, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction, respectively.

Results: In 5XFAD mice, DORA-22 significantly increased light-phase sleep without reducing Aβ levels, …


Mitochondrial Metabolism In Major Neurological Diseases, Zhengqiu Zhou, Grant L. Austin, Lyndsay E. A. Young, Lance A. Johnson, Ramon Sun Nov 2018

Mitochondrial Metabolism In Major Neurological Diseases, Zhengqiu Zhou, Grant L. Austin, Lyndsay E. A. Young, Lance A. Johnson, Ramon Sun

Molecular and Cellular Biochemistry Faculty Publications

Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell’s ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation–functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly …


Rna Binding Proteins Co-Localize With Small Tau Inclusions In Tauopathy, Brandon F. Maziuk, Daniel J. Apicco, Anna Lourdes Cruz, Lulu Jiang, Peter E. A. Ash, Edroaldo Lummertz De Rocha, Cheng Zhang, Wai Haung Yu, John Leszyk, Jose F. Abisambra, Hu Li, Benjamin Wolozin Aug 2018

Rna Binding Proteins Co-Localize With Small Tau Inclusions In Tauopathy, Brandon F. Maziuk, Daniel J. Apicco, Anna Lourdes Cruz, Lulu Jiang, Peter E. A. Ash, Edroaldo Lummertz De Rocha, Cheng Zhang, Wai Haung Yu, John Leszyk, Jose F. Abisambra, Hu Li, Benjamin Wolozin

Sanders-Brown Center on Aging Faculty Publications

The development of insoluble, intracellular neurofibrillary tangles composed of the microtubule-associated protein tau is a defining feature of tauopathies, including Alzheimer’s disease (AD). Accumulating evidence suggests that tau pathology co-localizes with RNA binding proteins (RBPs) that are known markers for stress granules (SGs). Here we used proteomics to determine how the network of tau binding proteins changes with disease in the rTg4510 mouse, and then followed up with immunohistochemistry to identify RNA binding proteins that co-localize with tau pathology. The tau interactome networks revealed striking disease-related changes in interactions between tau and a multiple RBPs, and biochemical fractionation studies demonstrated …


Treatment Of Mci And Alzheimer's Disease, Mark A. Lovell, Bert C. Lynn May 2018

Treatment Of Mci And Alzheimer's Disease, Mark A. Lovell, Bert C. Lynn

Chemistry Faculty Patents

The present invention provides, among other things, therapeutic compositions and methods that can effectively treat, slow or prevent a neurological disease (e.g., a neurodegenerative disease, e.g., mild cognitive impairment (MCI) or Alzheimer's disease (AD)), in particular, based on therapeutically effective amount of nifedipine, oxidized or nitroso nifedipine derivatives, lactam (e.g., a compound of formula (Ic) or (Ic-i), e.g., NFD-L1), thyroxine (T4), triiodothyronine (T3) and combinations thereof.


Insulin-Degrading Enzyme Is Not Secreted From Cultured Cells, Eun Suk Song, David W. Rodgers, Louis Hersh Feb 2018

Insulin-Degrading Enzyme Is Not Secreted From Cultured Cells, Eun Suk Song, David W. Rodgers, Louis Hersh

Molecular and Cellular Biochemistry Faculty Publications

Insulin-degrading enzyme (IDE) functions in the catabolism of bioactive peptides. Established roles include degrading insulin and the amyloid beta peptide (Aβ), linking it to diabetes and Alzheimer’s disease. IDE is primarily located in the cytosol, and a longstanding question is how it gains access to its peptide substrates. Reports suggest that IDE secreted by an unconventional pathway participates in extracellular hydrolysis of insulin and Aβ. We find that IDE release from cultured HEK-293 or BV-2 cells represents only ~1% of total cellular IDE, far less than has been reported previously. Importantly, lactate dehydrogenase (LDH) and other cytosolic enzymes are released …


Amyloid-Beta Solubility In The Treatment Of Alzheimer's Disease, Michael Paul Murphy Jan 2018

Amyloid-Beta Solubility In The Treatment Of Alzheimer's Disease, Michael Paul Murphy

Molecular and Cellular Biochemistry Faculty Publications

No abstract provided.


Systems Biology Approach To Late-Onset Alzheimer's Disease Genome-Wide Association Study Identifies Novel Candidate Genes Validated Using Brain Expression Data And Caenorhabditis Elegans Experiments, Shubhabrata Mukherjee, Joshua C. Russell, Daniel T. Carr, Jeremy D. Burgess, Mariet Allen, Daniel J. Serie, Kevin L. Boehme, John S. K. Kauwe, Adam C. Naj, David W. Fardo, Dennis W. Dickson, Thomas J. Montine, Nilufer Ertekin-Taner, Matt R. Kaeberlein, Paul K. Crane Oct 2017

Systems Biology Approach To Late-Onset Alzheimer's Disease Genome-Wide Association Study Identifies Novel Candidate Genes Validated Using Brain Expression Data And Caenorhabditis Elegans Experiments, Shubhabrata Mukherjee, Joshua C. Russell, Daniel T. Carr, Jeremy D. Burgess, Mariet Allen, Daniel J. Serie, Kevin L. Boehme, John S. K. Kauwe, Adam C. Naj, David W. Fardo, Dennis W. Dickson, Thomas J. Montine, Nilufer Ertekin-Taner, Matt R. Kaeberlein, Paul K. Crane

Biostatistics Faculty Publications

Introduction—We sought to determine whether a systems biology approach may identify novel late-onset Alzheimer's disease (LOAD) loci.

Methods—We performed gene-wide association analyses and integrated results with human protein-protein interaction data using network analyses. We performed functional validation on novel genes using a transgenic Caenorhabditis elegans Aβ proteotoxicity model and evaluated novel genes using brain expression data from people with LOAD and other neurodegenerative conditions.

Results—We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were associated with Aβ …


Age Drives Distortion Of Brain Metabolic, Vascular And Cognitive Functions, And The Gut Microbiome, Jared D. Hoffman, Ishita Parikh, Stefan J. Green, George Chlipala, Robert P. Mohney, Mignon Keaton, Bjoern Bauer, Anika M. S. Hartz, Ai-Ling Lin Sep 2017

Age Drives Distortion Of Brain Metabolic, Vascular And Cognitive Functions, And The Gut Microbiome, Jared D. Hoffman, Ishita Parikh, Stefan J. Green, George Chlipala, Robert P. Mohney, Mignon Keaton, Bjoern Bauer, Anika M. S. Hartz, Ai-Ling Lin

Sanders-Brown Center on Aging Faculty Publications

Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in …


Calcineurin/Nfat Signaling In Activated Astrocytes Drives Network Hyperexcitability In AΒ-Bearing Mice, Pradoldej Sompol, Jennifer L. Furman, Melanie M. Pleiss, Susan D. Kraner, Irina A. Artiushin, Seth R. Batten, Jorge E. Quintero, Linda A. Simmerman, Tina L. Beckett, Mark A. Lovell, M. Paul Murphy, Greg A. Gerhardt, Christopher M. Norris Jun 2017

Calcineurin/Nfat Signaling In Activated Astrocytes Drives Network Hyperexcitability In AΒ-Bearing Mice, Pradoldej Sompol, Jennifer L. Furman, Melanie M. Pleiss, Susan D. Kraner, Irina A. Artiushin, Seth R. Batten, Jorge E. Quintero, Linda A. Simmerman, Tina L. Beckett, Mark A. Lovell, M. Paul Murphy, Greg A. Gerhardt, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with …


Using Enzyme-Based Biosensors To Measure Tonic And Phasic Glutamate In Alzheimer's Mouse Models, Holly C. Hunsberger, Sharay E. Setti, Ryan T. Heslin, Jorge E. Quintero, Greg A. Gerhardt, Miranda N. Reed May 2017

Using Enzyme-Based Biosensors To Measure Tonic And Phasic Glutamate In Alzheimer's Mouse Models, Holly C. Hunsberger, Sharay E. Setti, Ryan T. Heslin, Jorge E. Quintero, Greg A. Gerhardt, Miranda N. Reed

Neuroscience Faculty Publications

Neurotransmitter disruption is often a key component of diseases of the central nervous system (CNS), playing a role in the pathology underlying Alzheimer's disease, Parkinson's disease, depression, and anxiety. Traditionally, microdialysis has been the most common (lauded) technique to examine neurotransmitter changes that occur in these disorders. But because microdialysis has the ability to measure slow 1-20 minute changes across large areas of tissue, it has the disadvantage of invasiveness, potentially destroying intrinsic connections within the brain and a slow sampling capability. A relatively newer technique, the microelectrode array (MEA), has numerous advantages for measuring specific neurotransmitter changes within discrete …


Neuroimaging Biomarkers Of Caloric Restriction On Brain Metabolic And Vascular Functions, Ai-Ling Lin, Ishita Parikh, Jared D. Hoffman, David Ma Mar 2017

Neuroimaging Biomarkers Of Caloric Restriction On Brain Metabolic And Vascular Functions, Ai-Ling Lin, Ishita Parikh, Jared D. Hoffman, David Ma

Sanders-Brown Center on Aging Faculty Publications

Purpose of Review

Non-invasive neuroimaging methods have been developed as powerful tools for identifying in vivo brain functions for studies in humans and animals. Here, we review the imaging biomarkers that are being used to determine the changes within brain metabolic and vascular functions induced by caloric restriction (CR) and their potential usefulness for future studies with dietary interventions in humans.

Recent Findings

CR causes an early shift in brain metabolism of glucose to ketone bodies and enhances ATP production, neuronal activity, and cerebral blood flow (CBF). With age, CR preserves mitochondrial activity, neurotransmission, CBF, and spatial memory. CR also …


A Cognitive Electrophysiological Signature Differentiates Amnestic Mild Cognitive Impairment From Normal Aging, Juan Li, Lucas S. Broster, Gregory A. Jicha, Nancy B. Munro, Frederick A. Schmitt, Erin L. Abner, Richard J. Kryscio, Charles D. Smith, Yang Jiang Jan 2017

A Cognitive Electrophysiological Signature Differentiates Amnestic Mild Cognitive Impairment From Normal Aging, Juan Li, Lucas S. Broster, Gregory A. Jicha, Nancy B. Munro, Frederick A. Schmitt, Erin L. Abner, Richard J. Kryscio, Charles D. Smith, Yang Jiang

Behavioral Science Faculty Publications

Background: Noninvasive and effective biomarkers for early detection of amnestic mild cognitive impairment (aMCI) before measurable changes in behavioral performance remain scarce. Cognitive event-related potentials (ERPs) measure synchronized synaptic neural activity associated with a cognitive event. Loss of synapses is a hallmark of the neuropathology of early Alzheimer’s disease (AD). In the present study, we tested the hypothesis that ERP responses during working memory retrieval discriminate aMCI from cognitively normal controls (NC) matched in age and education.

Methods: Eighteen NC, 17 subjects with aMCI, and 13 subjects with AD performed a delayed match-to-sample task specially designed not only to be …


Widespread Tau Seeding Activity At Early Braak Stages, Jennifer L. Furman, Jaime Vaquer-Alicea, Charles L. White, Nigel J. Cairns, Peter T. Nelson, Marc I. Diamond Jan 2017

Widespread Tau Seeding Activity At Early Braak Stages, Jennifer L. Furman, Jaime Vaquer-Alicea, Charles L. White, Nigel J. Cairns, Peter T. Nelson, Marc I. Diamond

Pathology and Laboratory Medicine Faculty Publications

Transcellular propagation of tau aggregates may underlie the progression of pathology in Alzheimer's disease (AD) and other tauopathies. Braak staging (B1, B2, B3) is based on phospho-tau accumulation within connected brain regions: entorhinal cortex (B1); hippocampus/limbic system (B2); and frontal and parietal lobes (B3). We previously developed a specific and sensitive assay that uses flow cytometry to quantify tissue seeding activity based on fluorescence resonance energy transfer (FRET) in cells that stably express tau reporter proteins. In a tauopathy mouse model, we have detected seeding activity far in advance of histopathological changes. It remains unknown whether individuals with AD also …


Selective Suppression Of The Α Isoform Of P38 Mapk Rescues Late-Stage Tau Pathology, Nicole Maphis, Shanya Jiang, Guixiang Xu, Olga N. Kokiko-Cochran, Saktimayee M. Roy, Linda J. Van Eldik, D. Martin Watterson, Bruce T. Lamb, Kiran Bhaskar Dec 2016

Selective Suppression Of The Α Isoform Of P38 Mapk Rescues Late-Stage Tau Pathology, Nicole Maphis, Shanya Jiang, Guixiang Xu, Olga N. Kokiko-Cochran, Saktimayee M. Roy, Linda J. Van Eldik, D. Martin Watterson, Bruce T. Lamb, Kiran Bhaskar

Sanders-Brown Center on Aging Faculty Publications

Background: Hyperphosphorylation and aggregation of tau protein are the pathological hallmarks of Alzheimer’s disease and related tauopathies. We previously demonstrated that the microglial activation induces tau hyperphosphorylation and cognitive impairment via activation of p38 mitogen-activated protein kinase (p38 MAPK) in the hTau mouse model of tauopathy that was deficient for microglial fractalkine receptor CX3CR1.

Method: We report an isoform-selective, brain-permeable, and orally bioavailable small molecule inhibitor of p38α MAPK (MW181) and its effects on tau phosphorylation in vitro and in hTau mice.

Results: First, pretreatment of mouse primary cortical neurons with MW181 completely blocked inflammation-induced p38α MAPK activation and AT8 …


Extracellular Vesicle-Associated Aβ Mediates Trans-Neuronal Bioenergetic And Ca2+-Handling Deficits In Alzheimer's Disease Models, Erez Eitan, Emmette R. Hutchison, Krisztina Marosi, James Comotto, Maja Mustapic, Saket M. Nigam, Caitlin Suire, Chinmoyee Maharana, Gregory A. Jicha, Dong Liu, Vasiliki Machairaki, Kenneth W. Witwer, Dimitrios Kapogiannis, Mark P. Mattson Sep 2016

Extracellular Vesicle-Associated Aβ Mediates Trans-Neuronal Bioenergetic And Ca2+-Handling Deficits In Alzheimer's Disease Models, Erez Eitan, Emmette R. Hutchison, Krisztina Marosi, James Comotto, Maja Mustapic, Saket M. Nigam, Caitlin Suire, Chinmoyee Maharana, Gregory A. Jicha, Dong Liu, Vasiliki Machairaki, Kenneth W. Witwer, Dimitrios Kapogiannis, Mark P. Mattson

Sanders-Brown Center on Aging Faculty Publications

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder in which aggregation-prone neurotoxic amyloid β-peptide (Aβ) accumulates in the brain. Extracellular vesicles (EVs), including exosomes, are small 50–150 nm membrane vesicles that have recently been implicated in the prion-like spread of self-aggregating proteins. Here we report that EVs isolated from AD patient cerebrospinal fluid and plasma, from the plasma of two AD mouse models, and from the medium of neural cells expressing familial AD presenilin 1 mutations, destabilize neuronal Ca2+ homeostasis, impair mitochondrial function, and sensitize neurons to excitotoxicity. EVs contain a relatively low amount of Aβ but have an …


AΒ40 Reduces P-Glycoprotein At The Blood-Brain Barrier Through The Ubiquitin-Proteasome Pathway, Anika M. S. Hartz, Yu Zhong, Andrea Wolf, Harry Levine Iii, David S. Miller, Björn Bauer Feb 2016

AΒ40 Reduces P-Glycoprotein At The Blood-Brain Barrier Through The Ubiquitin-Proteasome Pathway, Anika M. S. Hartz, Yu Zhong, Andrea Wolf, Harry Levine Iii, David S. Miller, Björn Bauer

Sanders-Brown Center on Aging Faculty Publications

Failure to clear amyloid-β (Aβ) from the brain is in part responsible for Aβ brain accumulation in Alzheimer's disease (AD). A critical protein for clearing Aβ across the blood–brain barrier is the efflux transporter P-glycoprotein (P-gp) in the luminal plasma membrane of the brain capillary endothelium. P-gp is reduced at the blood–brain barrier in AD, which has been shown to be associated with Aβ brain accumulation. However, the mechanism responsible for P-gp reduction in AD is not well understood. Here we focused on identifying critical mechanistic steps involved in reducing P-gp in AD. We …


A Therapeutic Approach For Senile Dementias: Neuroangiogenesis, Charles T. Ambrose Jan 2015

A Therapeutic Approach For Senile Dementias: Neuroangiogenesis, Charles T. Ambrose

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Alzheimer's disease (AD) and related senile dementias (SDs) represent a growing medical and economic crisis in this country. Apart from cautioning persons about risk factors, no practical, effective therapy is currently available. Much of the recent research in AD has been based on the amyloid cascade theory. Another approach assumes a vascular basis for SDs. This paper presents evidence from a score of studies that cerebral capillary density (CCD) declines during old age in animals and people as well as in AD. Neuroangiogenic (NAG) factors initiate and maintain capillaries in the brain. Thus a waning level of these factors and …


Self-Reported Head Injury And Risk Of Late-Life Impairment And Ad Pathology In An Ad Center Cohort, Erin L. Abner, Peter T. Nelson, Frederick A. Schmitt, Steven R. Browning, David W. Fardo, Lijie Wan, Gregory A. Jicha, Gregory E. Cooper, Charles D. Smith, Allison M. Caban-Holt, Linda J. Van Eldik, Richard J. Kryscio Jun 2014

Self-Reported Head Injury And Risk Of Late-Life Impairment And Ad Pathology In An Ad Center Cohort, Erin L. Abner, Peter T. Nelson, Frederick A. Schmitt, Steven R. Browning, David W. Fardo, Lijie Wan, Gregory A. Jicha, Gregory E. Cooper, Charles D. Smith, Allison M. Caban-Holt, Linda J. Van Eldik, Richard J. Kryscio

Sanders-Brown Center on Aging Faculty Publications

Aims: To evaluate the relationship between self-reported head injury and cognitive impairment, dementia, mortality, and Alzheimer's disease (AD)-type pathological changes. Methods: Clinical and neuropathological data from participants enrolled in a longitudinal study of aging and cognition (n = 649) were analyzed to assess the chronic effects of self-reported head injury. Results: The effect of self-reported head injury on the clinical state depended on the age at assessment: for a 1-year increase in age, the OR for the transition to clinical mild cognitive impairment (MCI) at the next visit for participants with a history of head injury was 1.21 and 1.34 …


Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik Jul 2012

Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

Overproduction of proinflammatory cytokines in the CNS has been implicated as a key contributor to pathophysiology progression in Alzheimer's disease (AD), and extensive studies with animal models have shown that selective suppression of excessive glial proinflammatory cytokines can improve neurologic outcomes. The prior art, therefore, raises the logical postulation that intervention with drugs targeting dysregulated glial proinflammatory cytokine production might be effective disease-modifying therapeutics if used in the appropriate biological time window. To test the hypothesis that early stage intervention with such drugs might be therapeutically beneficial, we examined the impact of intervention with MW01-2-151SRM (MW-151), an experimental therapeutic that …