Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Medicine and Health Sciences

Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson Jan 2023

Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson

Theses and Dissertations--Molecular and Cellular Biochemistry

Human metapneumovirus (HMPV) is a non-segmented, negative strand RNA virus (NNSV) that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. Despite the initial identification of HMPV in 2001, there are currently no FDA approved antivirals or vaccines available. Therefore, understanding the mechanism of HMPV replication is critical for the identification of novel therapeutic targets. A key feature in the replication cycle of HMPV and other NNSVs is the formation of membrane-less, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). Recent work on NNSV IBs suggests they display characteristics of biomolecular condensates formed …


The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith Jan 2023

The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith

Theses and Dissertations--Molecular and Cellular Biochemistry

Protein Tyrosine Phosphatase 4A3 (PTP4A3 or PRL-3) is an oncogenic dual-specificity phosphatase that drives tumor metastasis, promotes cancer cell survival, and is correlated with poor patient prognosis in a variety of solid tumors and leukemias. The mechanisms that drive PRL-3’s oncogenic functions are not well understood, in part due to a lack of research tools available to study this protein. The development of such tools has proven difficult, as the PRL family is ~80% homologous and the PRL catalytic binding pocket is shallow and hydrophobic. Currently available small molecules do not exhibit binding specificity for PRL-3 over PRL family members, …


Therapeutic Targeting Of Leukemia Stem Cells To Prevent T-Cell Acute Lymphoblastic Leukemia Relapse, Meghan G. Haney Jan 2021

Therapeutic Targeting Of Leukemia Stem Cells To Prevent T-Cell Acute Lymphoblastic Leukemia Relapse, Meghan G. Haney

Theses and Dissertations--Molecular and Cellular Biochemistry

The survival rate of T-cell Acute Lymphoblastic Leukemia (T-ALL) relapse is a dismal 10% of affected adults and 30% of children, largely due to the relapsed disease being more aggressive and treatment resistant than the initial disease. Relapse is thought to occur because conventional chemotherapies are unable to reliably eliminate a unique cell type known as leukemia stem (or propagating) cells (LSCs). LSCs are the only cells within the leukemia with the ability to self-renew and remake or replenish the ALL from a single cell. Currently, the pathways governing self-renewal in LSCs are largely unknown, precluding our ability to successfully …


Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee Jan 2021

Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch and glycogen are an essential component for the majority of species and have been developed to maintain homeostasis in response to environmental changes. Water-soluble glycogen is an excellent source of quick, short-term energy in response to energy demands. In contrast, plants and algae have developed the macromolecule starch that is elegantly suitable for their dependence on external circumstances. Semi-crystalline starch is water-insoluble and inaccessible to most amylolytic enzymes, thus plants and algae have developed a coordinated system so that these enzymes can gain access to the denser starch energy cache. Starch-like semi-crystalline polysaccharides are also found in red algae, …


Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden Jan 2021

Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden

Theses and Dissertations--Molecular and Cellular Biochemistry

Under pathophysiological conditions, the microtubule protein tau (MAPT) forms neurofibrillary tangles that are the hallmark of sporadic Alzheimer’s disease as well as familial frontotemporal dementias linked to chromosome 17 (FTDP-17). In this work, I report that MAPT forms circular RNAs through backsplicing of exon 12 to either exon 10 or exon 7 (12→10; 12→7), and that these circular RNAs are translated into proteins.

Using stable cell lines overexpressing the circular tau RNAs 12→7 and 12→10, we have discovered that the tau circular RNA 12→7 is translated in a rolling circle, giving rise to multiple proteins. This circular RNA …


Pneumovirus Infections: Understanding Rsv And Hmpv Entry, Replication, And Spread, Jonathan T. Kinder Jan 2020

Pneumovirus Infections: Understanding Rsv And Hmpv Entry, Replication, And Spread, Jonathan T. Kinder

Theses and Dissertations--Molecular and Cellular Biochemistry

Pneumoviruses including human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are significant causes of respiratory tract infections globally. Children, elderly, and immunocompromised patients are at the greatest risk for developing severe infections, which can have devastating outcomes. Although these viruses are ubiquitous with significant impacts on human health, there are no antivirals or vaccines available. The only FDA approved therapy is a monoclonal antibody for RSV, given prophylactically during the infectious season, and this treatment is only available for high risk infants. The work presented in this thesis aims to increase our understanding of how these viruses enter, replicate, and …


Vascular Cognitive Impairment And Dementia: The Importance Of Mixed Pathologies From Mouse Models To Humans, Alex Marian Helman Jan 2018

Vascular Cognitive Impairment And Dementia: The Importance Of Mixed Pathologies From Mouse Models To Humans, Alex Marian Helman

Theses and Dissertations--Molecular and Cellular Biochemistry

Age-related neurologic disease is a significant and growing burden on our society. Although the largest share of research effort has typically been devoted to the common neurodegenerative illnesses (such as Alzheimer’s disease, or AD), the reality is that nearly all cases of neurodegenerative disease possess elements of mixed pathology. Vascular contributions to cognitive impairment and dementia (VCID) is a complex form of dementia, combining aspects of vascular disease and other forms of dementia, such as Alzheimer’s disease. This pathology is heterogeneous and can include cerebral amyloid angiopathy (CAA), hemorrhages, white matter infarcts, and changes to the neurovascular unit. Given the …


Controlling Platelet Secretion To Modulate Hemostasis And Thrombosis, Smita Joshi Jan 2018

Controlling Platelet Secretion To Modulate Hemostasis And Thrombosis, Smita Joshi

Theses and Dissertations--Molecular and Cellular Biochemistry

Upon vascular injury, activated blood platelets fuse their granules to the plasma membrane and release cargo to regulate the vascular microenvironment, a dynamic process central to platelet function in many critical processes including hemostasis, thrombosis, immunity, wound healing, angiogenesis etc. This granule- plasma membrane fusion is mediated by a family of membrane proteins- Soluble N-ethyl maleimide Attachment Receptor Proteins(SNAREs). SNAREs that reside on vesicle (v-SNAREs) /Vesicle-Associated Membrane Proteins(VAMPs) interact with target/t-SNAREs forming a trans-bilayer complex that facilitates granule fusion. Though many components of exocytic machinery are identified, it is still not clear how it could be manipulated to prevent …


Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang Jan 2018

Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang

Theses and Dissertations--Molecular and Cellular Biochemistry

Signaling scaffolds are critical for the correct spatial organization of enzymes within the ERK1/2 signaling pathway and proper transmission of intracellular information. However, mechanisms that control molecular dynamics within scaffolding complexes, as well as biological activities regulated by the specific assemblies, remain unclear.

The scaffold protein Shoc2 is critical for transmission of the ERK1/2 pathway signals. Shoc2 accelerates ERK1/2 signaling by integrating Ras and RAF-1 enzymes into a multi-protein complex. Germ-line mutations in shoc2 cause Noonan-like RASopathy, a disorder with a wide spectrum of developmental deficiencies. However, the physiological role of Shoc2, the nature of ERK1/2 signals transduced through this …


Investigating Therapeutic Options For Lafora Disease Using Structural Biology And Translational Methods, Amanda R. Sherwood Jan 2013

Investigating Therapeutic Options For Lafora Disease Using Structural Biology And Translational Methods, Amanda R. Sherwood

Theses and Dissertations--Molecular and Cellular Biochemistry

Lafora disease (LD) is a rare yet invariably fatal form of epilepsy characterized by progressive degeneration of the central nervous and motor systems and accumulation of insoluble glucans within cells. LD results from mutation of either the phosphatase laforin, an enzyme that dephosphorylates cellular glycogen, or the E3 ubiquitin ligase malin, the binding partner of laforin. Currently, there are no therapeutic options for LD, or reported methods by which the specific activity of glucan phosphatases such as laforin can be easily measured. To facilitate our translational studies, we developed an assay with which the glucan phosphatase activity of laforin as …


The Cellular Nucleic Acid Binding Protein Regulates The Alzheimer’S Disease Β-Secretase Protein Bace1, Christopher J. Holler Jan 2012

The Cellular Nucleic Acid Binding Protein Regulates The Alzheimer’S Disease Β-Secretase Protein Bace1, Christopher J. Holler

Theses and Dissertations--Molecular and Cellular Biochemistry

Alzheimer’s disease (AD) is the most common neurodegenerative disease affecting the elderly population and is believed to be caused by the overproduction and accumulation of the toxic amyloid beta (Aβ) peptide in the brain. Aβ is produced by two separate enzymatic cleavage events of the larger membrane bound amyloid precursor protein, APP. The first, and rate-limiting, cleavage event is made by beta-secretase, or BACE1, and is thus an attractive therapeutic target. Our lab, as well as many others, has shown that BACE1 protein and activity are increased in late-stage sporadic AD. We have extended these findings to show that BACE1 …