Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Medicine and Health Sciences

Long-Lasting Impairments In Quadriceps Mitochondrial Health, Muscle Size, And Phenotypic Composition Are Present After Non-Invasive Anterior Cruciate Ligament Injury, Steven M. Davi, Ahram Ahn, Mckenzie S. White, Timothy A. Butterfield, Kate Kosmac, Oh Sung Kwon, Lindsey K. Lepley Jan 2022

Long-Lasting Impairments In Quadriceps Mitochondrial Health, Muscle Size, And Phenotypic Composition Are Present After Non-Invasive Anterior Cruciate Ligament Injury, Steven M. Davi, Ahram Ahn, Mckenzie S. White, Timothy A. Butterfield, Kate Kosmac, Oh Sung Kwon, Lindsey K. Lepley

Center for Muscle Biology Faculty Publications

Introduction: Despite rigorous rehabilitation aimed at restoring muscle health, anterior cruciate ligament (ACL) injury is often hallmarked by significant long-term quadriceps muscle weakness. Derangements in mitochondrial function are a common feature of various atrophying conditions, yet it is unclear to what extent mitochondria are involved in the detrimental sequela of quadriceps dysfunction after ACL injury. Using a preclinical, non-invasive ACL injury rodent model, our objective was to explore the direct effect of an isolated ACL injury on mitochondrial function, muscle atrophy, and muscle phenotypic transitions.

Methods: A total of 40 male and female, Long Evans rats (16-week-old) were exposed to …


A Muscle Cell-Macrophage Axis Involving Matrix Metalloproteinase 14 Facilitates Extracellular Matrix Remodeling With Mechanical Loading, Bailey D. Peck, Kevin A. Murach, R. Grace Walton, Alexander J. Simmons, Douglas E. Long, Kate Kosmac, Cory M. Dungan, Philip A. Kern, Marcas M. Bamman, Charlotte A. Peterson Jan 2022

A Muscle Cell-Macrophage Axis Involving Matrix Metalloproteinase 14 Facilitates Extracellular Matrix Remodeling With Mechanical Loading, Bailey D. Peck, Kevin A. Murach, R. Grace Walton, Alexander J. Simmons, Douglas E. Long, Kate Kosmac, Cory M. Dungan, Philip A. Kern, Marcas M. Bamman, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

The extracellular matrix (ECM) in skeletal muscle plays an integral role in tissue development, structural support, and force transmission. For successful adaptation to mechanical loading, remodeling processes must occur. In a large cohort of older adults, transcriptomics revealed that genes involved in ECM remodeling, including matrix metalloproteinase 14 (MMP14), were the most upregulated following 14 weeks of progressive resistance exercise training (PRT). Using single-cell RNA-seq, we identified macrophages as a source of Mmp14 in muscle following a hypertrophic exercise stimulus in mice. In vitro contractile activity in myotubes revealed that the gene encoding cytokine leukemia inhibitory factor ( …


Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich Dec 2021

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich

Center for Muscle Biology Faculty Publications

There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22–24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation. The epigenetic age of muscle …


Fusion And Beyond: Satellite Cell Contributions To Loading-Induced Skeletal Muscle Adaptation, Kevin A. Murach, Christopher S. Fry, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson Sep 2021

Fusion And Beyond: Satellite Cell Contributions To Loading-Induced Skeletal Muscle Adaptation, Kevin A. Murach, Christopher S. Fry, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell–cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of …


Early Satellite Cell Communication Creates A Permissive Environment For Long-Term Muscle Growth, Kevin A. Murach, Bailey D. Peck, Robert A. Policastro, Ivan J. Vechetti Jr., Douglas W. Van Pelt, Cory M. Dungan, Lance T. Denes, Xu Fu, Camille R. Brightwell, Gabriel E. Zentner, Esther E. Dupont-Versteegden, Christopher I. Richards, Jeramiah J. Smith, Christopher S. Fry, John J. Mccarthy, Charlotte A. Peterson Mar 2021

Early Satellite Cell Communication Creates A Permissive Environment For Long-Term Muscle Growth, Kevin A. Murach, Bailey D. Peck, Robert A. Policastro, Ivan J. Vechetti Jr., Douglas W. Van Pelt, Cory M. Dungan, Lance T. Denes, Xu Fu, Camille R. Brightwell, Gabriel E. Zentner, Esther E. Dupont-Versteegden, Christopher I. Richards, Jeramiah J. Smith, Christopher S. Fry, John J. Mccarthy, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses Wisp1 expression required …


Metformin Blunts Muscle Hypertrophy In Response To Progressive Resistance Exercise Training In Older Adults: A Randomized, Double‐Blind, Placebo‐Controlled, Multicenter Trial: The Masters Trial, R. Grace Walton, Cory M. Dungan, Douglas E. Long, S. Craig Tuggle, Kate Kosmac, Bailey D. Peck, Heather M. Bush, Alejandro G. Villasante Tezanos, Gerald Mcgwin, Samuel T. Windham, Fernando Ovalle, Marcas M. Bamman, Philip A. Kern, Charlotte A. Peterson Sep 2019

Metformin Blunts Muscle Hypertrophy In Response To Progressive Resistance Exercise Training In Older Adults: A Randomized, Double‐Blind, Placebo‐Controlled, Multicenter Trial: The Masters Trial, R. Grace Walton, Cory M. Dungan, Douglas E. Long, S. Craig Tuggle, Kate Kosmac, Bailey D. Peck, Heather M. Bush, Alejandro G. Villasante Tezanos, Gerald Mcgwin, Samuel T. Windham, Fernando Ovalle, Marcas M. Bamman, Philip A. Kern, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However, the hypertrophic response to PRT is variable, and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation, so we hypothesized that metformin would augment the muscle response to PRT in healthy women and men aged 65 and older. In a randomized, double-blind trial, participants received 1,700 mg/day metformin (N = 46) or placebo (N = 48) throughout the study, and all subjects performed 14 weeks of supervised PRT. Although responses to PRT varied, placebo gained more lean body …


Human Skeletal Muscle Macrophages Increase Following Cycle Training And Are Associated With Adaptations That May Facilitate Growth, R. Grace Walton, Kate Kosmac, Jyothi Mula, Christopher S. Fry, Bailey D. Peck, Jason S. Groshong, Brian S. Finlin, Beibei Zhu, Philip A. Kern, Charlotte A. Peterson Jan 2019

Human Skeletal Muscle Macrophages Increase Following Cycle Training And Are Associated With Adaptations That May Facilitate Growth, R. Grace Walton, Kate Kosmac, Jyothi Mula, Christopher S. Fry, Bailey D. Peck, Jason S. Groshong, Brian S. Finlin, Beibei Zhu, Philip A. Kern, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Skeletal muscle macrophages participate in repair and regeneration following injury. However, their role in physiological adaptations to exercise is unexplored. We determined whether endurance exercise training (EET) alters macrophage content and characteristics in response to resistance exercise (RE), and whether macrophages are associated with other exercise adaptations. Subjects provided vastus lateralis biopsies before and after one bout of RE, after 12 weeks of EET (cycling), and after a final bout of RE. M2 macrophages (CD11b+/CD206+) did not increase with RE, but increased in response to EET (P < 0.01). Increases in M2 macrophages were positively correlated with fiber hypertrophy (r = 0.49) and satellite cells (r = 0.47). M2c macrophages (CD206+/CD163+) also increased following EET (P < 0.001), and were associated with fiber hypertrophy (r = 0.64). Gene expression was quantified using NanoString. Following EET, the change in M2 macrophages was positively associated with changes in HGF, IGF1, and extracellular matrix genes. EET decreased expression of IL6 (P < 0.05), C/EBPβ (P < 0.01), and MuRF (P < 0.05), and increased expression of IL-4 (P < 0.01), TNFα (P < 0.01) and the TWEAK receptor FN14 (P < 0.05). The change in FN14 gene expression was inversely associated with changes in C/EBPβ (r = −0.58) and MuRF (r = −0.46) following EET. In cultured human myotubes, siRNA inhibition of FN14 increased expression of C/EBPβ (P < 0.05) and MuRF (P < 0.05). Our data suggest that macrophages contribute to the muscle response to EET, potentially including modulation of TWEAK-FN14 signaling.


A Novel Tetracycline-Responsive Transgenic Mouse Strain For Skeletal Muscle-Specific Gene Expression, Masahiro Iwata, Davis A. Englund, Yuan Wen, Cory M. Dungan, Kevin A. Murach, Ivan J. Vechetti Jr., Christopher B. Mobley, Charlotte A. Peterson, John J. Mccarthy Oct 2018

A Novel Tetracycline-Responsive Transgenic Mouse Strain For Skeletal Muscle-Specific Gene Expression, Masahiro Iwata, Davis A. Englund, Yuan Wen, Cory M. Dungan, Kevin A. Murach, Ivan J. Vechetti Jr., Christopher B. Mobley, Charlotte A. Peterson, John J. Mccarthy

Center for Muscle Biology Faculty Publications

Background: The tetracycline-responsive system (Tet-ON/OFF) has proven to be a valuable tool for manipulating gene expression in an inducible, temporal, and tissue-specific manner. The purpose of this study was to create and characterize a new transgenic mouse strain utilizing the human skeletal muscle α-actin (HSA) promoter to drive skeletal muscle-specific expression of the reverse tetracycline transactivator (rtTA) gene which we have designated as the HSA-rtTA mouse.

Methods: To confirm the HSA-rtTA mouse was capable of driving skeletal muscle-specific expression, we crossed the HSA-rtTA mouse with the tetracycline-responsive histone H2B-green fluorescent protein (H2B-GFP) transgenic mouse in order to label myonuclei.

Results: …


Tutorial For Using Sliceomatic To Calculate Thigh Area And Composition From Computed Tomography Images From Older Adults, Richard A. Dennis, Douglas E. Long, Reid D. Landes, Kalpana P. Padala, Prasad R. Padala, Kimberly K. Garner, James N. Wise, Charlotte A. Peterson, Dennis H. Sullivan Oct 2018

Tutorial For Using Sliceomatic To Calculate Thigh Area And Composition From Computed Tomography Images From Older Adults, Richard A. Dennis, Douglas E. Long, Reid D. Landes, Kalpana P. Padala, Prasad R. Padala, Kimberly K. Garner, James N. Wise, Charlotte A. Peterson, Dennis H. Sullivan

Center for Muscle Biology Faculty Publications

Objective

Area of muscle, fat, and bone is often measured in thigh CT scans when tissue composition is a key outcome. SliceOmatic software is commonly referenced for such analysis but published methods may be insufficient for new users. Thus, a quick start guide to calculating thigh composition using SliceOmatic has been developed.

Methods

CT images of the thigh were collected from older (69 ± 4 yrs, N = 24) adults before and after 12-weeks of resistance training. SliceOmatic was used to segment images into seven density regions encompassing fat, muscle, and bone from -190 to +2000 Hounsfield Units [HU]. The …


Myonuclear Domain Flexibility Challenges Rigid Assumptions On Satellite Cell Contribution To Skeletal Muscle Fiber Hypertrophy, Kevin A. Murach, Davis A. Englund, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson May 2018

Myonuclear Domain Flexibility Challenges Rigid Assumptions On Satellite Cell Contribution To Skeletal Muscle Fiber Hypertrophy, Kevin A. Murach, Davis A. Englund, Esther E. Dupont-Versteegden, John J. Mccarthy, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Satellite cell-mediated myonuclear accretion is thought to be required for skeletal muscle fiber hypertrophy, and even drive hypertrophy by preceding growth. Recent studies in humans and rodents provide evidence that challenge this axiom. Specifically, Type 2 muscle fibers reliably demonstrate a substantial capacity to hypertrophy in the absence of myonuclear accretion, challenging the notion of a tightly regulated myonuclear domain (i.e., area that each myonucleus transcriptionally governs). In fact, a “myonuclear domain ceiling”, or upper limit of transcriptional output per nucleus to support hypertrophy, has yet to be identified. Satellite cells respond to muscle damage, and also play an important …


Acute Resistance Exercise Induces Sestrin2 Phosphorylation And P62 Dephosphorylation In Human Skeletal Muscle, Nina Zeng, Randall F. D'Souza, Vandre C. Figueiredo, James F. Markworth, Llion A. Roberts, Jonathan M. Peake, Cameron J. Mitchell, David Cameron-Smith Dec 2017

Acute Resistance Exercise Induces Sestrin2 Phosphorylation And P62 Dephosphorylation In Human Skeletal Muscle, Nina Zeng, Randall F. D'Souza, Vandre C. Figueiredo, James F. Markworth, Llion A. Roberts, Jonathan M. Peake, Cameron J. Mitchell, David Cameron-Smith

Center for Muscle Biology Faculty Publications

Sestrins (1, 2, 3) are a family of stress-inducible proteins capable of attenuating oxidative stress, regulating metabolism, and stimulating autophagy. Sequestosome1 (p62) is also a stress-inducible multifunctional protein acting as a signaling hub for oxidative stress and selective autophagy. It is unclear whether Sestrin and p62Ser403 are regulated acutely or chronically by resistance exercise (RE) or training (RT) in human skeletal muscle. Therefore, the acute and chronic effects of RE on Sestrin and p62 in human skeletal muscle were examined through two studies. In Study 1, nine active men (22.1 ± 2.2 years) performed a bout of single-leg strength …


Micrornas, Heart Failure, And Aging: Potential Interactions With Skeletal Muscle, Kevin A. Murach, John J. Mccarthy Mar 2017

Micrornas, Heart Failure, And Aging: Potential Interactions With Skeletal Muscle, Kevin A. Murach, John J. Mccarthy

Center for Muscle Biology Faculty Publications

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by targeting mRNAs for degradation or translational repression. MiRNAs can be expressed tissue specifically and are altered in response to various physiological conditions. It has recently been shown that miRNAs are released into the circulation, potentially for the purpose of communicating with distant tissues. This manuscript discusses miRNA alterations in cardiac muscle and the circulation during heart failure, a prevalent and costly public health issue. A potential mechanism for how skeletal muscle maladaptations during heart failure could be mediated by myocardium-derived miRNAs released to the circulation is presented. An overview …