Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Dartmouth College

Series

2013

Growth & development

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair Aug 2013

Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair

Dartmouth Scholarship

The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential adjuvant and alternative therapies derived from nature's repertoire of bactericidal proteins and peptides. In humans, the airway surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, ac


Control Of Candida Albicans Metabolism And Biofilm Formation By Pseudomonas Aeruginosa Phenazines, Diana K. Morales, Nora Grahl, Chinweike Okegbe, Lars E. P. Dietrich, Nicholas J. Jacobs, Deborah A. Hogan Jan 2013

Control Of Candida Albicans Metabolism And Biofilm Formation By Pseudomonas Aeruginosa Phenazines, Diana K. Morales, Nora Grahl, Chinweike Okegbe, Lars E. P. Dietrich, Nicholas J. Jacobs, Deborah A. Hogan

Dartmouth Scholarship

Candidaalbicanshasdevelopmentalprogramsthatgoverntransitionsbetweenyeastandfilamentousmorphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm develop- ment were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fer- mentation products (ethanol, glycerol, and …