Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Adam12 Induces Actin Cytoskeleton And Extracellular Matrix Reorganization During Early Adipocyte Differentiation By Regulating Beta1 Integrin Function, Nobuko Kawaguchi, Christina Sundberg, Marie Kveiborg, Behzad Moghadaszadeh, Meena Asmar, Nikolaj Dietrich, Charles Kumar Thodeti, Finn C. Nielsen, Peter Moller, Arthur M. Mercurio, Reidar Albrechtsen, Ulla M. Wewer Nov 2010

Adam12 Induces Actin Cytoskeleton And Extracellular Matrix Reorganization During Early Adipocyte Differentiation By Regulating Beta1 Integrin Function, Nobuko Kawaguchi, Christina Sundberg, Marie Kveiborg, Behzad Moghadaszadeh, Meena Asmar, Nikolaj Dietrich, Charles Kumar Thodeti, Finn C. Nielsen, Peter Moller, Arthur M. Mercurio, Reidar Albrechtsen, Ulla M. Wewer

Arthur M. Mercurio

Changes in cell shape are a morphological hallmark of differentiation. In this study we report that the expression of ADAM12, a disintegrin and metalloprotease, dramatically affects cell morphology in preadipocytes, changing them from a flattened, fibroblastic appearance to a more rounded shape. We showed that the highest levels of ADAM12 mRNA were detected in preadipocytes at the critical stage when preadipocytes become permissive for adipogenic differentiation. Furthermore, as assessed by immunostaining, ADAM12 was transiently expressed at the cell surface concomitant with the reduced activity of beta1 integrin. Co-immunoprecipitation studies indicated the formation of ADAM12/beta1 integrin complexes in these preadipocytes. Overexpression …


Hepatitis C Virus Core-Derived Peptides Inhibit Genotype 1b Viral Genome Replication Via Interaction With Ddx3x, Chaomin Sun, Cara T. Pager, Guangxiang Luo, Peter Sarnow, Jamie H. D. Cate Sep 2010

Hepatitis C Virus Core-Derived Peptides Inhibit Genotype 1b Viral Genome Replication Via Interaction With Ddx3x, Chaomin Sun, Cara T. Pager, Guangxiang Luo, Peter Sarnow, Jamie H. D. Cate

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The protein DDX3X is a DEAD-box RNA helicase that is essential for the hepatitis C virus (HCV) life cycle. The HCV core protein has been shown to bind to DDX3X both in vitro and in vivo. However, the specific interactions between these two proteins and the functional importance of these interactions for the HCV viral life cycle remain unclear. We show that amino acids 16-36 near the N-terminus of the HCV core protein interact specifically with DDX3X both in vitro and in vivo. Replication of HCV replicon NNeo/C-5B RNA (genotype 1b) is significantly suppressed in HuH-7-derived cells expressing green fluorescent …


Sialic Acid Transport And Catabolism Are Cooperatively Regulated By Siar And Crp In Nontypeable Haemophilus Influenzae, Jason W. Johnston, Haider Shamsulddin, Anne-Frances Miller, Michael A. Apicella Sep 2010

Sialic Acid Transport And Catabolism Are Cooperatively Regulated By Siar And Crp In Nontypeable Haemophilus Influenzae, Jason W. Johnston, Haider Shamsulddin, Anne-Frances Miller, Michael A. Apicella

Microbiology, Immunology, and Molecular Genetics Faculty Publications

BACKGROUND: The transport and catabolism of sialic acid, a critical virulence factor for nontypeable Haemophilus influenzae, is regulated by two transcription factors, SiaR and CRP.

RESULTS: Using a mutagenesis approach, glucosamine-6-phosphate (GlcN-6P) was identified as a co-activator for SiaR. Evidence for the cooperative regulation of both the sialic acid catabolic and transport operons suggested that cooperativity between SiaR and CRP is required for regulation. cAMP was unable to influence the expression of the catabolic operon in the absence of SiaR but was able to induce catabolic operon expression when both SiaR and GlcN-6P were present. Alteration of helical phasing supported …


Mechanisms Of Oxidant Generation By Catalase, Diane E. Heck, Michael Shakarjian, Hong-Duck Kim, Jeffrey Laskin, Anna M. Vetrano Aug 2010

Mechanisms Of Oxidant Generation By Catalase, Diane E. Heck, Michael Shakarjian, Hong-Duck Kim, Jeffrey Laskin, Anna M. Vetrano

NYMC Faculty Publications

The enzyme catalase converts solar radiation into reactive oxidant species (ROS). In this study, we report that several bacterial catalases (hydroperoxidases, HP), including Escherichia coli HP-I and HP-II also generate reactive oxidants in response to ultraviolet B light (UVB). HP-I and HP-II are identical except for the presence of NADPH. We found that only one of the catalases, HPI, produces oxidants in response to UVB light, indicating a potential role for the nucleotide in ROS production. This prompts us to speculate that NADPH may act as a cofactor regulating ROS generation by mammalian catalases. Structural analysis of the NADPH domains …


Neuropilin 1 Directly Interacts With Fer Kinase To Mediate Semaphorin3a-Induced Death Of Cortical Neurons, Susan X. Jiang, Shawn N. Whitehead, Amy Aylsworth, Bogdan Zurakowski, Kenneth Chan, Jianjun Li, Sheng T. Hou Mar 2010

Neuropilin 1 Directly Interacts With Fer Kinase To Mediate Semaphorin3a-Induced Death Of Cortical Neurons, Susan X. Jiang, Shawn N. Whitehead, Amy Aylsworth, Bogdan Zurakowski, Kenneth Chan, Jianjun Li, Sheng T. Hou

Anatomy and Cell Biology Publications

Neuropilins (NRPs) are receptors for the major chemorepulsive axonal guidance cue semaphorins (Sema). The interaction of Sema3A/NRP1 during development leads to the collapse of growth cones. Here we show that Sema3A also induces death of cultured cortical neurons through NRP1. A specific NRP1 inhibitory peptide ameliorated Sema3A-evoked cortical axonal retraction and neuronal death. Moreover, Sema3A was also involved in cerebral ischemia-induced neuronal death. Expression levels of Sema3A and NRP1, but not NRP2, were significantly increased early during brain reperfusion following transient focal cerebral ischemia. NRP1 inhibitory peptide delivered to the ischemic brain was potently neuroprotective and prevented the loss of …


Supervillin Reorganizes The Actin Cytoskeleton And Increases Invadopodial Efficiency, Jessica Lynn Crowley, Tara C. Smith, Zhiyou Fang, Norio Takizawa, Elizabeth J. Luna Jan 2010

Supervillin Reorganizes The Actin Cytoskeleton And Increases Invadopodial Efficiency, Jessica Lynn Crowley, Tara C. Smith, Zhiyou Fang, Norio Takizawa, Elizabeth J. Luna

Elizabeth J. Luna

Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation …