Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Iron-Dependent Cleavage Of Ribosomal Rna During Oxidative Stress In The Yeast Saccharomyces Cerevisiae, Jessica A Zinskie, Arnab Ghosh, Brandon M Trainor, Daniel Shedlovskiy, Dimitri G Pestov, Natalia Shcherbik Sep 2018

Iron-Dependent Cleavage Of Ribosomal Rna During Oxidative Stress In The Yeast Saccharomyces Cerevisiae, Jessica A Zinskie, Arnab Ghosh, Brandon M Trainor, Daniel Shedlovskiy, Dimitri G Pestov, Natalia Shcherbik

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Stress-induced strand breaks in rRNA have been observed in many organisms, but the mechanisms by which they originate are not well-understood. Here we show that a chemical rather than an enzymatic mechanism initiates rRNA cleavages during oxidative stress in yeast (Saccharomyces cerevisiae). We used cells lacking the mitochondrial glutaredoxin Grx5 to demonstrate that oxidant-induced cleavage formation in 25S rRNA correlates with intracellular iron levels. Sequestering free iron by chemical or genetic means decreased the extent of rRNA degradation and relieved the hypersensitivity of grx5Δ cells to the oxidants. Importantly, subjecting purified ribosomes to an in vitro iron/ascorbate …


N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers Aug 2018

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias …


Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper Jun 2018

Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second …


The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld Jun 2018

The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating …


Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves Jun 2018

Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Changes in sphingolipid metabolism have been linked to modulation of cell fate in both yeast and mammalian cells. We previously assessed the role of sphingolipids in cell death regulation using a well characterized yeast model of acetic acid-induced regulated cell death, finding that Isc1p, inositol phosphosphingolipid phospholipase C, plays a pro-death role in this process. Indeed, isc1∆ mutants exhibited a higher resistance to acetic acid associated with reduced mitochondrial alterations. Here, we show that Isc1p is regulated by Sch9p under acetic acid stress, since both single and double mutants lacking Isc1p or/and Sch9p have the same resistant phenotype, and SCH9 …


Guidelines And Recommendations On Yeast Cell Death Nomenclature, Didac Carmona-Gutierrez, Maria Anna Bauer, Andreas Zimmermann, Andrés Aguilera, Nicanor Austriaco, Kathryn Ayscough, Rena Balzan, Shoshana Bar-Nun, Antonio Barrientos, Peter Belenky, Marc Blondel, Ralf J Braun, Michael Breitenbach, William C Burhans, Sabrina Büttner, Duccio Cavalieri, Michael Chang, Katrina F Cooper, Manuela Côrte-Real, Vítor Costa, Christophe Cullin, Ian Dawes, Jörn Dengjel, Martin B Dickman, Tobias Eisenberg, Birthe Fahrenkrog, Nicolas Fasel, Kai-Uwe Fröhlich, Ali Gargouri, Sergio Giannattasio, Paola Goffrini, Campbell W Gourlay, Chris M Grant, Michael T Greenwood, Nicoletta Guaragnella, Thomas Heger, Jürgen Heinisch, Eva Herker, Johannes M Herrmann, Sebastian Hofer, Antonio Jiménez-Ruiz, Helmut Jungwirth, Katharina Kainz, Dimitrios P Kontoyiannis, Paula Ludovico, Stéphen Manon, Enzo Martegani, Cristina Mazzoni, Lynn A Megeney, Chris Meisinger, Jens Nielsen, Thomas Nyström, Heinz D Osiewacz, Tiago F Outeiro, Hay-Oak Park, Tobias Pendl, Dina Petranovic, Stephane Picot, Peter Polčic, Ted Powers, Mark Ramsdale, Mark Rinnerthaler, Patrick Rockenfeller, Christoph Ruckenstuhl, Raffael Schaffrath, Maria Segovia, Fedor F Severin, Amir Sharon, Stephan J Sigrist, Cornelia Sommer-Ruck, Maria João Sousa, Johan M Thevelein, Karin Thevissen, Vladimir Titorenko, Michel B Toledano, Mick Tuite, F-Nora Vögtle, Benedikt Westermann, Joris Winderickx, Silke Wissing, Stefan Wölfl, Zhaojie J Zhang, Richard Y Zhao, Bing Zhou, Lorenzo Galluzzi, Guido Kroemer, Frank Madeo Jan 2018

Guidelines And Recommendations On Yeast Cell Death Nomenclature, Didac Carmona-Gutierrez, Maria Anna Bauer, Andreas Zimmermann, Andrés Aguilera, Nicanor Austriaco, Kathryn Ayscough, Rena Balzan, Shoshana Bar-Nun, Antonio Barrientos, Peter Belenky, Marc Blondel, Ralf J Braun, Michael Breitenbach, William C Burhans, Sabrina Büttner, Duccio Cavalieri, Michael Chang, Katrina F Cooper, Manuela Côrte-Real, Vítor Costa, Christophe Cullin, Ian Dawes, Jörn Dengjel, Martin B Dickman, Tobias Eisenberg, Birthe Fahrenkrog, Nicolas Fasel, Kai-Uwe Fröhlich, Ali Gargouri, Sergio Giannattasio, Paola Goffrini, Campbell W Gourlay, Chris M Grant, Michael T Greenwood, Nicoletta Guaragnella, Thomas Heger, Jürgen Heinisch, Eva Herker, Johannes M Herrmann, Sebastian Hofer, Antonio Jiménez-Ruiz, Helmut Jungwirth, Katharina Kainz, Dimitrios P Kontoyiannis, Paula Ludovico, Stéphen Manon, Enzo Martegani, Cristina Mazzoni, Lynn A Megeney, Chris Meisinger, Jens Nielsen, Thomas Nyström, Heinz D Osiewacz, Tiago F Outeiro, Hay-Oak Park, Tobias Pendl, Dina Petranovic, Stephane Picot, Peter Polčic, Ted Powers, Mark Ramsdale, Mark Rinnerthaler, Patrick Rockenfeller, Christoph Ruckenstuhl, Raffael Schaffrath, Maria Segovia, Fedor F Severin, Amir Sharon, Stephan J Sigrist, Cornelia Sommer-Ruck, Maria João Sousa, Johan M Thevelein, Karin Thevissen, Vladimir Titorenko, Michel B Toledano, Mick Tuite, F-Nora Vögtle, Benedikt Westermann, Joris Winderickx, Silke Wissing, Stefan Wölfl, Zhaojie J Zhang, Richard Y Zhao, Bing Zhou, Lorenzo Galluzzi, Guido Kroemer, Frank Madeo

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic …


Persistent Stress-Induced Neuroplastic Changes In The Locus Coeruleus/Norepinephrine System, Olga Borodovitsyna, Neal Joshi, Daniel Chandler Jan 2018

Persistent Stress-Induced Neuroplastic Changes In The Locus Coeruleus/Norepinephrine System, Olga Borodovitsyna, Neal Joshi, Daniel Chandler

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress …