Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

The Role Of Generative Adversarial Networks In Bioimage Analysis And Computational Diagnostics., Ahmed Naglah Dec 2022

The Role Of Generative Adversarial Networks In Bioimage Analysis And Computational Diagnostics., Ahmed Naglah

Electronic Theses and Dissertations

Computational technologies can contribute to the modeling and simulation of the biological environments and activities towards achieving better interpretations, analysis, and understanding. With the emergence of digital pathology, we can observe an increasing demand for more innovative, effective, and efficient computational models. Under the umbrella of artificial intelligence, deep learning mimics the brain’s way in learn complex relationships through data and experiences. In the field of bioimage analysis, models usually comprise discriminative approaches such as classification and segmentation tasks. In this thesis, we study how we can use generative AI models to improve bioimage analysis tasks using Generative Adversarial Networks …


Machine Learning Based Medical Image Deepfake Detection: A Comparative Study, Siddharth Solaiyappan, Yuxin Wen Apr 2022

Machine Learning Based Medical Image Deepfake Detection: A Comparative Study, Siddharth Solaiyappan, Yuxin Wen

Engineering Faculty Articles and Research

Deep generative networks in recent years have reinforced the need for caution while consuming various modalities of digital information. One avenue of deepfake creation is aligned with injection and removal of tumors from medical scans. Failure to detect medical deepfakes can lead to large setbacks on hospital resources or even loss of life. This paper attempts to address the detection of such attacks with a structured case study. Specifically, we evaluate eight different machine learning algorithms, which include three conventional machine learning methods (Support Vector Machine, Random Forest, Decision Tree) and five deep learning models (DenseNet121, DenseNet201, ResNet50, ResNet101, VGG19) …