Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Dartmouth Scholarship

Mice

Articles 1 - 9 of 9

Full-Text Articles in Medicine and Health Sciences

Logarithmic Intensity Compression In Fluorescence Guided Surgery Applications, Alisha V. Dsouza, Huiyun Lin, Jason Gunn, Brian W. Pogue Aug 2015

Logarithmic Intensity Compression In Fluorescence Guided Surgery Applications, Alisha V. Dsouza, Huiyun Lin, Jason Gunn, Brian W. Pogue

Dartmouth Scholarship

The use of fluorescence video imaging to guide surgery is rapidly expanding, and improvements in camera readout dynamic range have not matched display capabilities. Logarithmic intensity compression is a fast, single-step mapping technique that can map the useable dynamic range of high-bit fluorescence images onto the typical 8-bit display and potentially be a variable dynamic contrast enhancement tool. We demonstrate a ∼4.6  times improvement in image quality quantified by image entropy and a dynamic range reduction by a factor of ∼380 by the use of log-compression tools in processing in vivo fluorescence images.


An Imaging-Based Platform For High-Content, Quantitative Evaluation Of Therapeutic Response In 3d Tumour Models, Jonathan P. Celli, Imran Rizvi, Adam R. Blanden, Iqbal Massodi, Iqbal Massodi, Michael D. Glidden, Brian Pogue, Tayyaba Hasan Jan 2014

An Imaging-Based Platform For High-Content, Quantitative Evaluation Of Therapeutic Response In 3d Tumour Models, Jonathan P. Celli, Imran Rizvi, Adam R. Blanden, Iqbal Massodi, Iqbal Massodi, Michael D. Glidden, Brian Pogue, Tayyaba Hasan

Dartmouth Scholarship

While it is increasingly recognized that three-dimensional (3D) cell culture models recapitulate drug responses of human cancers with more fidelity than monolayer cultures, a lack of quantitative analysis methods limit their implementation for reliable and routine assessment of emerging therapies. Here, we introduce an approach based on computational analysis of fluorescence image data to provide high-content readouts of dose-dependent cytotoxicity, growth inhibition, treatment-induced architectural changes and size-dependent response in 3D tumour models. We demonstrate this approach in adherent 3D ovarian and pancreatic multiwell extracellular matrix tumour overlays subjected to a panel of clinically relevant cytotoxic modalities and appropriately designed controls …


Spatial Frequency Analysis Of Anisotropic Drug Transport In Tumor Samples, Stewart Russell, Kimberley S. Samkoe, Jason R. Gunn, P Jack Hoopes, Thienan A. Nguyen, Milo J. Russell, Robert R. Alfano, Brian W. Pogue Jan 2014

Spatial Frequency Analysis Of Anisotropic Drug Transport In Tumor Samples, Stewart Russell, Kimberley S. Samkoe, Jason R. Gunn, P Jack Hoopes, Thienan A. Nguyen, Milo J. Russell, Robert R. Alfano, Brian W. Pogue

Dartmouth Scholarship

Directional Fourier spatial frequency analysis was used on standard histological sections to identify salient directional bias in the spatial frequencies of stromal and epithelial patterns within tumor tissue. This directional bias is shown to be correlated to the pathway of reduced fluorescent tracer transport. Optical images of tumor specimens contain a complex distribution of randomly oriented aperiodic features used for neoplastic grading that varies with tumor type, size, and morphology. The internal organization of these patterns in frequency space is shown to provide a precise fingerprint of the extracellular matrix complexity, which is well known to be related to the …


Contrast Enhanced-Magnetic Resonance Imaging As A Surrogate To Map Verteporfin Delivery In Photodynamic Therapy, Kimberley S. Samkoe, Amber Bryant, Jason R. Gunn, Stephen P. Pereira, Tayyaba Hasan, Brian W. Pogue Dec 2013

Contrast Enhanced-Magnetic Resonance Imaging As A Surrogate To Map Verteporfin Delivery In Photodynamic Therapy, Kimberley S. Samkoe, Amber Bryant, Jason R. Gunn, Stephen P. Pereira, Tayyaba Hasan, Brian W. Pogue

Dartmouth Scholarship

The use of in vivo contrast-enhanced magnetic resonance (MR) imaging as a surrogate for photosensitizer (verteporfin) dosimetry in photodynamic therapy of pancreas cancer is demonstrated by correlating MR contrast uptake to ex vivo fluorescence images on excised tissue. An orthotopic pancreatic xenograft mouse model was used for the study. A strong correlation ([i]r=0.57 ) was found for bulk intensity measurements of T1-weighted gadolinium enhancement and verteporfin fluorescence in the tumor region of interest. The use of contrast-enhanced MR imaging shows promise as a method for treatment planning and photosensitizer dosimetry in human photodynamic therapy (PDT) of pancreas …


Dual-Tracer Background Subtraction Approach For Fluorescent Molecular Tomography, Kenneth M. Tichauer, Robert W. Holt, Fadi El-Ghussein, Scott C. Davis, Kimberly S. Samkoe, Jason R. Gunn, Frederic Leblond, Brian W. Pogue Jan 2013

Dual-Tracer Background Subtraction Approach For Fluorescent Molecular Tomography, Kenneth M. Tichauer, Robert W. Holt, Fadi El-Ghussein, Scott C. Davis, Kimberly S. Samkoe, Jason R. Gunn, Frederic Leblond, Brian W. Pogue

Dartmouth Scholarship

Diffuse fluorescence tomography requires high contrast-to-background ratios to accurately reconstruct inclusions of interest. This is a problem when imaging the uptake of fluorescently labeled molecularly targeted tracers in tissue, which can result in high levels of heterogeneously distributed background uptake. We present a dual-tracer background subtraction approach, wherein signal from the uptake of an untargeted tracer is subtracted from targeted tracer signal prior to image reconstruction, resulting in maps of targeted tracer binding. The approach is demonstrated in simulations, a phantom study, and in a mouse glioma imaging study, demonstrating substantial improvement over conventional and homogenous background subtraction image reconstruction …


Improved Tumor Contrast Achieved By Single Time Point Dual-Reporter Fluorescence Imaging, Kenneth M. Tichauer, Kimberley S. Samkoe, Kristian J. Sexton, Jason R. Gunn, Tayyaba Hasan, Brian W. Pogue May 2012

Improved Tumor Contrast Achieved By Single Time Point Dual-Reporter Fluorescence Imaging, Kenneth M. Tichauer, Kimberley S. Samkoe, Kristian J. Sexton, Jason R. Gunn, Tayyaba Hasan, Brian W. Pogue

Dartmouth Scholarship

In this study, we demonstrate a method to quantify biomarker expression that uses an exogenous dual-reporter imaging approach to improve tumor signal detection. The uptake of two fluorophores, one nonspecific and one targeted to the epidermal growth factor receptor (EGFR), were imaged at 1 h in three types of xenograft tumors spanning a range of EGFR expression levels (n  =  6 in each group). Using this dual-reporter imaging methodology, tumor contrast-to-noise ratio was amplified by >6 times at 1 h postinjection and >2 times at 24 h. Furthermore, by as early as 20 min postinjection, the dual-reporter imaging signal …


Quantitative Cherenkov Emission Spectroscopy For Tissue Oxygenation Assessment, Johan Axelsson, Adam K. Glaser, David J. Gladstone, Brian W. Pogue Feb 2012

Quantitative Cherenkov Emission Spectroscopy For Tissue Oxygenation Assessment, Johan Axelsson, Adam K. Glaser, David J. Gladstone, Brian W. Pogue

Dartmouth Scholarship

Measurements of Cherenkov emission in tissue during radiation therapy are shown to enable estimation of hemoglobin oxygen saturation non-invasively, through spectral fitting of the spontaneous emissions from the treated tissue. Tissue oxygenation plays a critical role in the efficacy of radiation therapy to kill tumor tissue. Yet in-vivo measurement of this has remained elusive in routine use because of the complexity of oxygen measurement techniques. There is a spectrally broad emission of Cherenkov light that is induced during the time of irradiation, and as this travels through tissue from the point of the radiation deposition, the tissue absorption and scatter …


Comparing Implementations Of Magnetic-Resonance-Guided Fluorescence Molecular Tomography For Diagnostic Classification Of Brain Tumors, Scott C. Davis, Kimberley S. Samkoe, Julia A. O’Hara, Summer L. Gibbs-Strauss, Keith D. Paulsen, Brian W. Pogue Sep 2010

Comparing Implementations Of Magnetic-Resonance-Guided Fluorescence Molecular Tomography For Diagnostic Classification Of Brain Tumors, Scott C. Davis, Kimberley S. Samkoe, Julia A. O’Hara, Summer L. Gibbs-Strauss, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

Fluorescence molecular tomography (FMT) systems coupled to conventional imaging modalities such as magnetic resonance imaging (MRI) and computed tomography provide unique opportunities to combine data sets and improve image quality and content. Yet, the ideal approach to combine these complementary data is still not obvious. This preclinical study compares several methods for incorporating MRI spatial prior information into FMT imaging algorithms in the context of in vivo tissue diagnosis. Populations of mice inoculated with brain tumors that expressed either high or low levels of epidermal growth factor receptor (EGFR) were imaged using an EGF-bound near-infrared dye and a spectrometer-based MRI-FMT …


Automated Identification Of Tumor Microscopic Morphology Based On Macroscopically Measured Scatter Signatures, Pilar Beatriz Garcia-Allende, Venkataramanan Krishnaswamy, P Jack Hoopes, Kimberley S. Samkoe, Olga M. Conde, Brian W. Pogue May 2009

Automated Identification Of Tumor Microscopic Morphology Based On Macroscopically Measured Scatter Signatures, Pilar Beatriz Garcia-Allende, Venkataramanan Krishnaswamy, P Jack Hoopes, Kimberley S. Samkoe, Olga M. Conde, Brian W. Pogue

Dartmouth Scholarship

An automated algorithm and methodology is presented to identify tumor-tissue morphologies based on broadband scatter data measured by raster scan imaging of the samples. A quasi-confocal reflectance imaging system was used to directly measure the tissue scatter reflectance in situ, and the spectrum was used to identify the scattering power, amplitude, and total wavelength-integrated intensity. Pancreatic tumor and normal samples were characterized using the instrument, and subtle changes in the scatter signal were encountered within regions of each sample. Discrimination between normal versus tumor tissue was readily performed using a K-nearest neighbor classifier algorithm. A similar approach worked …