Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Dartmouth Scholarship

Diagnosis

Publication Year

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

White Light-Informed Optical Properties Improve Ultrasound-Guided Fluorescence Tomography Of Photoactive Protoporphyrin Ix, Brendan P. Flynn, Alisha V. Dsouza, Stephen C. Kanick, Scott C. Davis, Brian W. Pogue Apr 2013

White Light-Informed Optical Properties Improve Ultrasound-Guided Fluorescence Tomography Of Photoactive Protoporphyrin Ix, Brendan P. Flynn, Alisha V. Dsouza, Stephen C. Kanick, Scott C. Davis, Brian W. Pogue

Dartmouth Scholarship

Subsurface fluorescence imaging is desirable for medical applications, including protoporphyrin-IX (PpIX)-based skin tumor diagnosis, surgical guidance, and dosimetry in photodynamic therapy. While tissue optical properties and heterogeneities make true subsurface fluorescence mapping an ill-posed problem, ultrasound-guided fluorescence-tomography (USFT) provides regional fluorescence mapping. Here USFT is implemented with spectroscopic decoupling of fluorescence signals (auto-fluorescence, PpIX, photoproducts), and white light spectroscopy-determined bulk optical properties. Segmented US images provide a priori spatial information for fluorescence reconstruction using region-based, diffuse FT. The method was tested in simulations, tissue homogeneous and inclusion phantoms, and an injected-inclusion animal model. Reconstructed fluorescence yield was linear with PpIX …


Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue Jan 2013

Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1 x 1 cm² square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the …


Quantitative, Spectrally-Resolved Intraoperative Fluorescence Imaging, Pablo A. Valdés, Frederic Leblond, Valerie L. Jacobs, Brian C. Wilson, Keith D. Paulsen, David W. Roberts Nov 2012

Quantitative, Spectrally-Resolved Intraoperative Fluorescence Imaging, Pablo A. Valdés, Frederic Leblond, Valerie L. Jacobs, Brian C. Wilson, Keith D. Paulsen, David W. Roberts

Dartmouth Scholarship

Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the …


A Digital X-Ray Tomosynthesis Coupled Near Infrared Spectral Tomography System For Dual-Modality Breast Imaging, Venkataramanan Krishnaswamy, Kelly E. Michaelsen, Brian W. Pogue, Steven P. Poplack, Ian Shaw, Ken Defrietas, Ken Brooks, Keith D. Paulsen Aug 2012

A Digital X-Ray Tomosynthesis Coupled Near Infrared Spectral Tomography System For Dual-Modality Breast Imaging, Venkataramanan Krishnaswamy, Kelly E. Michaelsen, Brian W. Pogue, Steven P. Poplack, Ian Shaw, Ken Defrietas, Ken Brooks, Keith D. Paulsen

Dartmouth Scholarship

A Near Infrared Spectral Tomography (NIRST) system has been developed and integrated into a commercial Digital Breast Tomosynthesis (DBT) scanner to allow structural and functional imaging of breast in vivo. The NIRST instrument uses an 8-wavelength continuous wave (CW) laser-based scanning source assembly and a 75-element silicon photodiode solid-state detector panel to produce dense spectral and spatial projection data from which spectrally constrained 3D tomographic images of tissue chromophores are produced. Integration of the optical imaging system into the DBT scanner allows direct co-registration of the optical and DBT images, while also facilitating the synergistic use of x-ray contrast as …


Improved Tumor Contrast Achieved By Single Time Point Dual-Reporter Fluorescence Imaging, Kenneth M. Tichauer, Kimberley S. Samkoe, Kristian J. Sexton, Jason R. Gunn, Tayyaba Hasan, Brian W. Pogue May 2012

Improved Tumor Contrast Achieved By Single Time Point Dual-Reporter Fluorescence Imaging, Kenneth M. Tichauer, Kimberley S. Samkoe, Kristian J. Sexton, Jason R. Gunn, Tayyaba Hasan, Brian W. Pogue

Dartmouth Scholarship

In this study, we demonstrate a method to quantify biomarker expression that uses an exogenous dual-reporter imaging approach to improve tumor signal detection. The uptake of two fluorophores, one nonspecific and one targeted to the epidermal growth factor receptor (EGFR), were imaged at 1 h in three types of xenograft tumors spanning a range of EGFR expression levels (n  =  6 in each group). Using this dual-reporter imaging methodology, tumor contrast-to-noise ratio was amplified by >6 times at 1 h postinjection and >2 times at 24 h. Furthermore, by as early as 20 min postinjection, the dual-reporter imaging signal …


Automated Classification Of Breast Pathology Using Local Measures Of Broadband Reflectance, Ashley M. Laughney, Venkataramanan Krishnaswamy, Pilar Beatriz Garcia-Allende, Olga M. Conde, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue Nov 2010

Automated Classification Of Breast Pathology Using Local Measures Of Broadband Reflectance, Ashley M. Laughney, Venkataramanan Krishnaswamy, Pilar Beatriz Garcia-Allende, Olga M. Conde, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

We demonstrate that morphological features pertinent to a tissue's pathology may be ascertained from localized measures of broadband reflectance, with a mesoscopic resolution (100-μm lateral spot size) that permits scanning of an entire margin for residual disease. The technical aspects and optimization of a k-nearest neighbor classifier for automated diagnosis of pathologies are presented, and its efficacy is validated in 29 breast tissue specimens. When discriminating between benign and malignant pathologies, a sensitivity and specificity of 91 and 77% was achieved. Furthermore, detailed subtissue-type analysis was performed to consider how diverse pathologies influence scattering response and overall classification efficacy. The …


Methodology Development For Three-Dimensional Mr-Guided Near Infrared Spectroscopy Of Breast Tumors, Colin M. Carpenter, Subhadra Srinivasan, Brian W. Pogue, Keith D. Paulsen Oct 2008

Methodology Development For Three-Dimensional Mr-Guided Near Infrared Spectroscopy Of Breast Tumors, Colin M. Carpenter, Subhadra Srinivasan, Brian W. Pogue, Keith D. Paulsen

Dartmouth Scholarship

Combined Magnetic Resonance (MR) and Near Infrared Spectroscopy (NIRS) has been proposed as a unique method to quantify hemodynamics, water content, and cellular size and packing density of breast tumors, as these tissue constituents can be quantified with increased resolution and overlaid on the structural features identified by the MR. However, the choices in how to reconstruct and visualize this information can have a dramatic impact on the feasibility of implementing this modality in the clinic. This is especially true in 3 dimensions, as there is often limited optical sampling of the breast tissue, and methods need to accurately reflect …