Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Dermatology

Thomas Jefferson University

Stress

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Global Mapping Of Transcription Factor Motifs In Human Aging., David Alfego, Ulrich Rodeck, Andres Kriete Jan 2018

Global Mapping Of Transcription Factor Motifs In Human Aging., David Alfego, Ulrich Rodeck, Andres Kriete

Department of Dermatology and Cutaneous Biology Faculty Papers

Biological aging is a complex process dependent on the interplay of cell autonomous and tissue contextual changes which occur in response to cumulative molecular stress and manifest through adaptive transcriptional reprogramming. Here we describe a transcription factor (TF) meta-analysis of gene expression datasets accrued from 18 tissue sites collected at different biological ages and from 7 different in-vitro aging models. In-vitro aging platforms included replicative senescence and an energy restriction model in quiescence (ERiQ), in which ATP was transiently reduced. TF motifs in promoter regions of trimmed sets of target genes were scanned using JASPAR and TRANSFAC. TF signatures established …


R992c (P.R1192c) Substitution In Collagen Ii Alters The Structure Of Mutant Molecules And Induces The Unfolded Protein Response., Hye Jin Chung, Deborah A. Jensen, Katarzyna Gawron, Andrzej Steplewski, Andrzej Fertala Jul 2009

R992c (P.R1192c) Substitution In Collagen Ii Alters The Structure Of Mutant Molecules And Induces The Unfolded Protein Response., Hye Jin Chung, Deborah A. Jensen, Katarzyna Gawron, Andrzej Steplewski, Andrzej Fertala

Department of Dermatology and Cutaneous Biology Faculty Papers

We investigated the molecular bases of spondyloepiphyseal dysplasia (SED) associated with the R992C (p.R1192C) substitution in collagen II. At the protein level, we analyzed the structure and integrity of mutant molecules, and at the cellular level, we specifically studied the effects of the presence of the R992C collagen II on the biological processes taking place in host cells. Our studies demonstrated that mutant collagen II molecules were characterized by altered electrophoretic mobility, relatively low thermostability, the presence of atypical disulfide bonds, and slow rates of secretion into the extracellular space. Analyses of cellular responses to the presence of the mutant …