Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Theses and Dissertations

Cancer

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Atomistic Assessment Of Drug-Phospholipid Interactions Consequent To Cancer Treatment: A Study Of Anthracycline Cardiotoxicity, Yara Elsayed Ahmed Jun 2023

Atomistic Assessment Of Drug-Phospholipid Interactions Consequent To Cancer Treatment: A Study Of Anthracycline Cardiotoxicity, Yara Elsayed Ahmed

Theses and Dissertations

Despite being one of the most effective chemotherapeutic agents developed to date, Anthracyclines are notorious for their cardiotoxicity. Their clinical use is frequently limited both in dosage and in prescription due to the severe cardiac damage they cause. The mechanism of anthracycline-induced cardiotoxicity is not yet fully understood. However, it is hypothesized that interactions with the myocardial membrane play an important role in imparting cardiotoxicity. In this study, we use molecular dynamics simulations and density functional theory calculations to study the anthracycline drug molecules and the interactions that they have with the myocardial membrane. We construct a myocardial membrane model …


Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …