Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Identification Of The Type Eleven Secretion System (T11ss) And Characterization Of T11ss-Dependent Effector Proteins, Alex S. Grossman Dec 2022

Identification Of The Type Eleven Secretion System (T11ss) And Characterization Of T11ss-Dependent Effector Proteins, Alex S. Grossman

Doctoral Dissertations

Host-associated microbes live in dangerous environments as a result of host immune killing, nutrient provisioning, and physiological conditions. Bacteria have evolved a host of surface and secreted proteins to help interact with this host environment and overcome nutrient limitation. The studies included within this dissertation describe the identification of a novel bacterial secretion system which has evolved to transport these symbiosis mediating proteins. This system, termed the type eleven secretion system (T11SS), is present throughout the Gram negative phylum Proteobacteria, including many human pathogens such as Neisseria meningitidis, Acinetobacter baumanii, Haemophilus haemolyticus, and Proteus vulgaris. Furthermore, …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Biomedical Applications Of Protein Films And Polymeric Nanomaterials, Sanjana Gopalakrishnan Oct 2022

Biomedical Applications Of Protein Films And Polymeric Nanomaterials, Sanjana Gopalakrishnan

Doctoral Dissertations

Biomaterials are widely applied for the diagnosis and treatment of numerous diseases. In addition to fulfilling specific biological functions, biomaterials must also be non-toxic, biocompatible, and sterilizable to be regarded as safe-for-use. Polymers are excellent candidates for fabricating functional biomaterials due to their wide availability and varied properties and may be natural or synthetic. Polymer precursors are fabricated into coatings, foams, scaffolds, gels, composites, and nanomaterials for several biomedical applications. This dissertation focuses on two types of polymeric biomaterials – protein-based materials and synthetic polymeric nanoparticles. Proteins are biopolymers that naturally occur with a variety of structural and functional properties. …


Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward Sep 2022

Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward

Doctoral Dissertations

Molecular motors, such as myosin, have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction in these motors is a root cause of many pathologies necessitating the application of intrinsic control over molecular motor function. We hypothesized that altering the myosin’s energy substrate via minor positional changes to the triphosphate portion of the molecule will allow us to control the protein and affect its in vitro function. We utilized positional isomers of a synthetic non-nucleoside triphosphate, azobenzene triphosphate, and assessed whether myosin’s force- and motion-generating capacity could …


Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan Mar 2022

Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan

Doctoral Dissertations

The study of protein higher-order structures is vital because it is closely related to the investigation of protein folding, aggregation, interaction and protein therapeutics. Consequently, numerous biochemical and biophysical tools have been developed to study protein higher-order structures in many different situations. The combination of covalent labeling (CL) and mass spectrometry (MS) has emerged as a powerful tool for studying protein structures and offers many advantages over other traditional techniques, such as better structural coverage, high throughput, high sensitivity, and the ability to study proteins in mixtures. This dissertation focuses on diethylpyrocarbonate (DEPC) as an effective CL reagent that can …