Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

A Xenopus Oocyte Model System To Study Action Potentials, Aaron Corbin-Leftwich, Hannah E Small, Helen H Robinson, Carlos A. Villalba-Galea, Linda M Boland Nov 2018

A Xenopus Oocyte Model System To Study Action Potentials, Aaron Corbin-Leftwich, Hannah E Small, Helen H Robinson, Carlos A. Villalba-Galea, Linda M Boland

School of Pharmacy Faculty Articles

Action potentials (APs) are the functional units of fast electrical signaling in excitable cells. The upstroke and downstroke of an AP is generated by the competing and asynchronous action of Na+- and K+-selective voltage-gated conductances. Although a mixture of voltage-gated channels has been long recognized to contribute to the generation and temporal characteristics of the AP, understanding how each of these proteins function and are regulated during electrical signaling remains the subject of intense research. AP properties vary among different cellular types because of the expression diversity, subcellular location, and modulation of ion channels. These complexities, in addition to the …


Regulation Of Kv2.1 Channel Inactivation By Phosphatidylinositol 4,5-Bisphosphate., Mayra Delgado-Ramírez, José J De Jesús-Pérez, Iván A Aréchiga-Figueroa, Jorge Arreola, Scott K Adney, Carlos A. Villalba-Galea, Diomedes E Logothetis, Aldo A Rodríguez-Menchaca Jan 2018

Regulation Of Kv2.1 Channel Inactivation By Phosphatidylinositol 4,5-Bisphosphate., Mayra Delgado-Ramírez, José J De Jesús-Pérez, Iván A Aréchiga-Figueroa, Jorge Arreola, Scott K Adney, Carlos A. Villalba-Galea, Diomedes E Logothetis, Aldo A Rodríguez-Menchaca

School of Pharmacy Faculty Articles

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a membrane phospholipid that regulates the function of multiple ion channels, including some members of the voltage-gated potassium (Kv) channel superfamily. The PIP2 sensitivity of Kv channels is well established for all five members of the Kv7 family and for Kv1.2 channels; however, regulation of other Kv channels by PIP2 remains unclear. Here, we investigate the effects of PIP2 on Kv2.1 channels by applying exogenous PIP2 to the cytoplasmic face of excised membrane patches, activating muscarinic receptors (M1R), or depleting endogenous PIP2 using a rapamycin-translocated 5-phosphatase (FKBP-Inp54p). Exogenous PIP2 rescued Kv2.1 channels from rundown and partially …