Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medicine and Health Sciences

Application Of Mass Spectrometry For The Characterization Of Synthetic Oligomers And Natural Lignin, Poorya Kamali Jan 2023

Application Of Mass Spectrometry For The Characterization Of Synthetic Oligomers And Natural Lignin, Poorya Kamali

Theses and Dissertations--Chemistry

As part of the ongoing effort to substitute finite fuel and chemical resources with renewable ones, biomass is emerging as one of the most promising sources. Biomass consists of three main components of cellulose, hemicellulose, and lignin. Traditionally, cellulose has been used extensively in pulping industry, while lignin has been considered waste and is burned to generate heat. Lignin, a complex aromatic polymer component of biomass, has the potential to be used as a source of aromatic chemicals and pharmaceutical synthons. The recalcitrant nature of lignin, the lack of effective lignin breakdown methods and analytical techniques to analyze it are …


Succinylated Polyethylenimine Gene Delivery Agents For Enhanced Transfection Efficacy, Md. Nasir Uddin Jan 2022

Succinylated Polyethylenimine Gene Delivery Agents For Enhanced Transfection Efficacy, Md. Nasir Uddin

Theses and Dissertations--Chemistry

Gene therapy aims to treat patients by altering or controlling gene expression. Today, most clinical approaches are viral-based due to their inherent gene delivery activity. However, there is still a significant interest in nonviral alternatives for gene delivery, particularly synthetic lipids and polymers, that do not suffer the immunogenicity, high cost, or mutagenesis concerns of viral vectors. Polymeric vectors are of particular interest due to the ability to further tune the polymer properties through the incorporation of additional functional units such as targeting ligands or shielding domains. Polyethylenimine (PEI), a highly cationic polymer, is often considered a benchmark for polymer-based …


Mechanism Of Antibiotic Permeability Through The Gram-Negative Bacterial Envelope, Olaniyi Alegun Jan 2022

Mechanism Of Antibiotic Permeability Through The Gram-Negative Bacterial Envelope, Olaniyi Alegun

Theses and Dissertations--Chemistry

The outer membrane of Gram-negative bacteria (GN) makes them distinct among superbugs that are associated with the development of antibiotic resistance. The outer membrane, and inner membrane, separated by the periplasm, form a double-membrane barrier to the entry of antibiotics into the cell. Several studies have been conducted to examine the role of outer membrane modifications such as porins, lipopolysaccharides, and efflux pumps on antibiotic resistance. However, there is a paucity of knowledge on how antibiotics behave in the periplasm, to gain access into their target region. My thesis focuses on understanding the mechanism of antibiotic permeability through the cellular …


Developments In Gold(Iii) Scaffolds For Protein Bioconjugation And Enhanced Anticancer Activity, Sailajah Gukathasan Jan 2022

Developments In Gold(Iii) Scaffolds For Protein Bioconjugation And Enhanced Anticancer Activity, Sailajah Gukathasan

Theses and Dissertations--Chemistry

Site-selective modifications of target proteins using specially designed small molecules is a powerful tool that has been extensively utilized in biomedicine. Small molecules can modify proteins either covalently or non-covalently depending on their structures and intrinsic chemical reactivity. Covalent chemical modification presents a more stable and often irreversible interaction with target proteins; unlike non-covalent binders, which form weak, reversible interactions with protein. Therefore, covalent modifiers represent an effective class of therapeutics due to their stability and irreversibility once bound to target proteins of interest. I hypothesized that tuning biocompatible, high-valent gold(III) complexes toward nucleophile-induced reductive elimination will lead to covalent …


Design, Synthesis, And Anticancer Properties Of Ru(Ii) Complexes With Organometallic, “Expanded” Bipyridine, And O,O’-Chelating Ligands, Raphael Ryan Jan 2021

Design, Synthesis, And Anticancer Properties Of Ru(Ii) Complexes With Organometallic, “Expanded” Bipyridine, And O,O’-Chelating Ligands, Raphael Ryan

Theses and Dissertations--Chemistry

Cancer is a worldwide public health crisis that requires new and improved drugs to be developed to extend survival rates and improve quality of life for the patient. Platinum-based drugs are used in approximately 50% of cancer treatment regimens. These drugs are highly effective in many kinds of cancer; however, cancers can develop platinum resistance and these drugs have troubling side effects that reduced their use and efficacy. To overcome these disadvantages, many other metals have been studied for their anticancer properties. Notably, the anticancer properties of ruthenium-based agents have drawn considerable attention with multiple ruthenium complexes entering clinical trials. …


Discovery Of Selective Probes Targeting Rna Polymerase I, Xiao Tan Jan 2019

Discovery Of Selective Probes Targeting Rna Polymerase I, Xiao Tan

Theses and Dissertations--Chemistry

RNR Polymerase I (RNA Pol I) is a “factory” that orchestrate the transcription of ribosomal rRNA for constructing ribosomes as a primary workshop for protein translation to sustain cell growth. Misregulation of RNA Pol I can cause uncontrolled cell proliferation, which leads to the development of cancer. Yeast (Saccharomyces cerevisiae) is a valuable model system to study RNA Pol I. Recently, the X-ray crystal structure of the yeast homologue of RNA Pol I was elucidated, offering the structural basis to selectively target this transcriptional machinery. The approach to selective RNA Pol I targeting was to disrupt the interaction …


Design, Synthesis And Biological Evaluation Of Inhibitors Against Both Human And Mouse Microsomal Prostaglandin E2 Synthase-1 Enzymes, Kai Ding Jan 2018

Design, Synthesis And Biological Evaluation Of Inhibitors Against Both Human And Mouse Microsomal Prostaglandin E2 Synthase-1 Enzymes, Kai Ding

Theses and Dissertations--Chemistry

As the principal pro-inflammatory prostanoid, prostaglandin E2 (PGE2) serves as mediator of pain and fever in inflammatory reactions. The biosynthesis of PGE2 starts from arachidonic acid (AA). Cyclooxygenase (COX)-1 and/or COX-2 converts AA to prostaglandin H2 (PGH2), and PGE2 synthases transform PGH2 to PGE2. Current mainstream approach for treating inflammation-related symptoms remains the application of traditional non-steroidal anti-inflammatory drugs (tNSAIDs) and selective COX-2 inhibitors (coxibs). As both categories shut down the biosynthesis of all downstream prostanoids, their application renders several deleterious effects including gastrointestinalulceration and cardiovascular risk. Microsomal prostaglandin …


Understanding Dna Condensation By Low Generation (G0/G1) And Zwitterionic G4 Pamam Dendrimers, Min An Jan 2016

Understanding Dna Condensation By Low Generation (G0/G1) And Zwitterionic G4 Pamam Dendrimers, Min An

Theses and Dissertations--Chemistry

Cationic polymers have shown potential as gene delivery vectors due to their ability to condense DNA and protect it from cellular and restriction nucleases. Dendrimers are hyperbranched macromolecules with precisely defined molecular weights and highly symmetric branches stemming from a central core. The nanosize, tunable surface chemistries and ease of surface functionalization has made dendrimers an attractive alternative to conventional linear polymers for DNA delivery applications. The commercially available, cationic dendrimer poly(amidoamine) or PAMAM is the most widely studied dendrimer for use as a gene delivery vector. The aim of this dissertation is to provide an increased understanding of the …