Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Medicine and Health Sciences

Oxidative Stress And Ion Channels In Neurodegenerative Diseases, Razan Orfali, Adnan Z. Alwatban, Rawan S. Orfali, Liz Lau, Noble Chea, Abdullah M. Alotaibi, Young-Woo Nam, Miao Zhang Jan 2024

Oxidative Stress And Ion Channels In Neurodegenerative Diseases, Razan Orfali, Adnan Z. Alwatban, Rawan S. Orfali, Liz Lau, Noble Chea, Abdullah M. Alotaibi, Young-Woo Nam, Miao Zhang

Pharmacy Faculty Articles and Research

Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson’s, Alzheimer’s, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington’s disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly …


Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov Mar 2022

Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov

Chemistry & Biochemistry Faculty Publications

n the present study, natural phaeosphaeride A (PPA) derivatives are synthesized. Anti-tumor studies are carried out on the PC3, K562, HCT-116, THP-1, MCF-7, A549, NCI-H929, Jurkat, and RPMI8226 tumor cell lines, and on the human embryonic kidney (HEK293) cell line. All the compounds synthesized turned out to have better efficacy than PPA towards the tumor cell lines listed. Among them, three compounds exhibited an ability to overcome the drug resistance of tumor cells associated with the overexpression of the P-glycoprotein by modulating the work of this transporter. Luminex xMAP technology was used to assess the effect of five synthesized compounds …


Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba Feb 2022

Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that synthesize aminoacyl-tRNAs to facilitate translation of the genetic code. Quality control by aaRS proofreading and other mechanisms maintains translational accuracy, which promotes cellular viability. Systematic disruption of proofreading, as recently demonstrated for alanyl-tRNA synthetase (AlaRS), leads to dysregulation of the proteome and reduced viability. Recent studies showed that environmental challenges such as exposure to reactive oxygen species can also alter aaRS synthetic and proofreading functions, prompting us to investigate if oxidation might positively or negatively affect AlaRS activity. We found that while oxidation leads to modification of several residues in Escherichia coli AlaRS, unlike …


The Interconnectivity Of Parkinson's Disease And Type Two Diabetes Mellitus, Erica Olfson Apr 2021

The Interconnectivity Of Parkinson's Disease And Type Two Diabetes Mellitus, Erica Olfson

Honors Scholars Collaborative Projects

This thesis is about the biochemical connection between Parkinson's disease and Type II Diabetes Mellitus.


Iron-Dependent Cleavage Of Ribosomal Rna During Oxidative Stress In The Yeast Saccharomyces Cerevisiae, Jessica A Zinskie, Arnab Ghosh, Brandon M Trainor, Daniel Shedlovskiy, Dimitri G Pestov, Natalia Shcherbik Sep 2018

Iron-Dependent Cleavage Of Ribosomal Rna During Oxidative Stress In The Yeast Saccharomyces Cerevisiae, Jessica A Zinskie, Arnab Ghosh, Brandon M Trainor, Daniel Shedlovskiy, Dimitri G Pestov, Natalia Shcherbik

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Stress-induced strand breaks in rRNA have been observed in many organisms, but the mechanisms by which they originate are not well-understood. Here we show that a chemical rather than an enzymatic mechanism initiates rRNA cleavages during oxidative stress in yeast (Saccharomyces cerevisiae). We used cells lacking the mitochondrial glutaredoxin Grx5 to demonstrate that oxidant-induced cleavage formation in 25S rRNA correlates with intracellular iron levels. Sequestering free iron by chemical or genetic means decreased the extent of rRNA degradation and relieved the hypersensitivity of grx5Δ cells to the oxidants. Importantly, subjecting purified ribosomes to an in vitro iron/ascorbate …


Doxorubicin-Induced Elevated Oxidative Stress And Neurochemical Alterations In Brain And Cognitive Decline: Protection By Mesna And Insights Into Mechanisms Of Chemotherapy-Induced Cognitive Impairment ("Chemobrain"), Jeriel T. R. Keeney, Xiaojia Ren, Govind Warrier, Teresa Noel, David K. Powell, Jennifer M. Brelsfoard, Rukhsana Sultana, Kathryn E. Saatman, Daret K. St. Clair, D. Allan Butterfield Jul 2018

Doxorubicin-Induced Elevated Oxidative Stress And Neurochemical Alterations In Brain And Cognitive Decline: Protection By Mesna And Insights Into Mechanisms Of Chemotherapy-Induced Cognitive Impairment ("Chemobrain"), Jeriel T. R. Keeney, Xiaojia Ren, Govind Warrier, Teresa Noel, David K. Powell, Jennifer M. Brelsfoard, Rukhsana Sultana, Kathryn E. Saatman, Daret K. St. Clair, D. Allan Butterfield

Chemistry Faculty Publications

Chemotherapy-induced cognitive impairment (CICI) is now widely recognized as a real and too common complication of cancer chemotherapy experienced by an ever-growing number of cancer survivors. Previously, we reported that doxorubicin (Dox), a prototypical reactive oxygen species (ROS)-producing anti-cancer drug, results in oxidation of plasma proteins, including apolipoprotein A-I (ApoA-I) leading to tumor necrosis factor-alpha (TNF-α)-mediated oxidative stress in plasma and brain. We also reported that co-administration of the antioxidant drug, 2-mercaptoethane sulfonate sodium (MESNA), prevents Dox-induced protein oxidation and subsequent TNF-α elevation in plasma. In this study, we measured oxidative stress in both brain and plasma of Dox-treated mice …


Extracellular Vesicles Released By Cardiomyocytes In A Doxorubicin-Induced Cardiac Injury Mouse Model Contain Protein Biomarkers Of Early Cardiac Injury, Chontida Yarana, Dustin W. Carroll, Jing Chen, Luksana Chaiswing, Yanming Zhao, Teresa Noel, Michael Alstott, Younsoo Bae, Emily V. Dressler, Jeffrey A. Moscow, D. Allan Butterfield, Haining Zhu, Daret K. St. Clair Apr 2018

Extracellular Vesicles Released By Cardiomyocytes In A Doxorubicin-Induced Cardiac Injury Mouse Model Contain Protein Biomarkers Of Early Cardiac Injury, Chontida Yarana, Dustin W. Carroll, Jing Chen, Luksana Chaiswing, Yanming Zhao, Teresa Noel, Michael Alstott, Younsoo Bae, Emily V. Dressler, Jeffrey A. Moscow, D. Allan Butterfield, Haining Zhu, Daret K. St. Clair

Toxicology and Cancer Biology Faculty Publications

Purpose—Cardiac injury is a major cause of death in cancer survivors, and biomarkers for it are detectable only after tissue injury has occurred. Extracellular vesicles (EV) remove toxic biomolecules from tissues and can be detected in the blood. Here, we evaluate the potential of using circulating EVs as early diagnostic markers for long-term cardiac injury.

Experimental Design—Using a mouse model of doxorubicin (DOX)-induced cardiac injury, we quantified serum EVs, analyzed proteomes, measured oxidized protein levels in serum EVs released after DOX treatment, and investigated the alteration of EV content.

Results—Treatment with DOX caused a significant increase in …


A Complex Molecular Switch Directs Stress-Induced Cyclin C Nuclear Release Through Scfgrr1-Mediated Degradation Of Med13., David C Stieg, Stephen D Willis, Vidyaramanan Ganesan, Kai Li Ong, Joseph Scuorzo, Mia Song, Julianne Grose, Randy Strich, Katrina F Cooper Feb 2018

A Complex Molecular Switch Directs Stress-Induced Cyclin C Nuclear Release Through Scfgrr1-Mediated Degradation Of Med13., David C Stieg, Stephen D Willis, Vidyaramanan Ganesan, Kai Li Ong, Joseph Scuorzo, Mia Song, Julianne Grose, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

In response to oxidative stress, cells decide whether to mount a survival or cell death response. The conserved cyclin C and its kinase partner Cdk8 play a key role in this decision. Both are members of the Cdk8 kinase module, which, with Med12 and Med13, associate with the core mediator complex of RNA polymerase II. In


Novel Docosahexaenoic Acid Ester Of Phloridzin Inhibits Proliferation And Triggers Apoptosis In An In Vitro Model Of Skin Cancer, Theodora Mantso, Dimitrios T. Trafalis, Sotiris Botaitis, Rodrigo Franco, Aglaia Pappa, H. P. Vasantha Rupasinghe, Mihalis I. Panayiotidis Jan 2018

Novel Docosahexaenoic Acid Ester Of Phloridzin Inhibits Proliferation And Triggers Apoptosis In An In Vitro Model Of Skin Cancer, Theodora Mantso, Dimitrios T. Trafalis, Sotiris Botaitis, Rodrigo Franco, Aglaia Pappa, H. P. Vasantha Rupasinghe, Mihalis I. Panayiotidis

School of Veterinary and Biomedical Sciences: Faculty Publications

Skin cancer is among the most common cancer types accompanied by rapidly increasing incidence rates, thus making the development of more efficient therapeutic approaches a necessity. Recent studies have revealed the potential role of decosahexaenoic acid ester of phloridzin (PZDHA) in suppressing proliferation of liver, breast, and blood cancer cell lines. In the present study, we investigated the cytotoxic potential of PZDHA in an in vitro model of skin cancer consisting of melanoma (A375), epidermoid carcinoma (A431), and non-tumorigenic (HaCaT) cell lines. Decosahexaenoic acid ester of phloridzin led to increased cytotoxicity in all cell lines as revealed by cell viability …


Translocation Of Cyclin C During Oxidative Stress Is Regulated By Interactions With Multiple Trafficking Proteins, Daniel G J Smethurst, Katrina F Cooper, Randy Strich Dec 2017

Translocation Of Cyclin C During Oxidative Stress Is Regulated By Interactions With Multiple Trafficking Proteins, Daniel G J Smethurst, Katrina F Cooper, Randy Strich

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Eukaryotic cells take cues from their environment and interpret them to enact a response. External stresses can produce a decision between adjusting to behaviors which promote surviving the stress, or enacting a cell death program. The decision to undergo programmed cell death (PCD) is controlled by a complex interaction between nuclear and mitochondrial signals. The mitochondria are highly dynamic organelles that constantly undergo fission and fusion. However, a dramatic shift in mitochondrial morphology toward fission occurs early in the PCD process. We have identified the transcription factor cyclin C as the biochemical trigger for stress‐induced mitochondrial hyper‐fragmentation in yeast (Cooper …


Snf1 Dependent Destruction Of Med13 Is Required For Programmed Cell Death Following Oxidative Stress In Yeast, Stephen D Willis, David C Stieg, R. Shah, Randy Strich, Katrina F Cooper Dec 2017

Snf1 Dependent Destruction Of Med13 Is Required For Programmed Cell Death Following Oxidative Stress In Yeast, Stephen D Willis, David C Stieg, R. Shah, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

All eukaryotic cells, when faced with unfavorable environmental conditions, have to decide whether to mount a survival or cell death response. The conserved cyclin C and its kinase partner Cdk8 play a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core mediator complex of RNA polymerase II. In S. cerevisiae, oxidative stress triggers Med13 destruction1, which thereafter releases cyclin Ci nto the cytoplasm. Cytoplasmic cyclin C associates with mitochondria where it induces hyper-fragmentation and programmed cell death2. This suggests a model in …


Modification Of The Ribosome As Part Of The Adaptive Response To Oxidative Stress In Yeast, Jessica A Zinskie, Daniel Shedlovskiy, Ethan Gardner, Dimitri G Pestov, Natalia Shcherbik Dec 2017

Modification Of The Ribosome As Part Of The Adaptive Response To Oxidative Stress In Yeast, Jessica A Zinskie, Daniel Shedlovskiy, Ethan Gardner, Dimitri G Pestov, Natalia Shcherbik

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Living organisms are constantly exposed to a variety of environmental and internal stressors tha tare detrimental to their cellular physiology and viability. One such condition, oxidativestress, is caused by abnormal amounts of Reactive Oxygen Species (ROS) that can lead to damage to proteins, nucleic acids, and lipids. Although the mechanisms to neutralize ROS have been widely studied, the understanding of ROS‐mediated signaling for these mechanisms is rather incomplete and sparse. We have uncovered a previously undescribed phenomenon of yeast ribosomes to respond to elevated levels of ROS through a specific endonucleolytic cleavage of the 25S rRNA in the c‐loop of …


Cellular And Molecular Mechanisms Underlying Alcohol-Induced Aggressiveness Of Breast Cancer, Yongchao Wang, Mei Xu, Zun-Ji Ke, Jia Luo Jan 2017

Cellular And Molecular Mechanisms Underlying Alcohol-Induced Aggressiveness Of Breast Cancer, Yongchao Wang, Mei Xu, Zun-Ji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Breast cancer is a leading cause of morbidity and mortality in women. Both Epidemiological and experimental studies indicate a positive correlation between alcohol consumption and the risk of breast cancer. While alcohol exposure may promote the carcinogenesis or onset of breast cancer, it may as well enhance the progression and aggressiveness of existing mammary tumors. Recent progress in this line of research suggests that alcohol exposure is associated with invasive breast cancer and promotes the growth and metastasis of mammary tumors. There are multiple potential mechanisms involved in alcohol-stimulated progression and aggressiveness of breast cancer. Alcohol may increase the mobility …


Nitric Oxide-Releasing Aspirin Suppresses Nf-Κb Signaling In Estrogen Receptor Negative Breast Cancer Cells In Vitro And In Vivo, Niharika Nath, Mitali Chattopadhyay, Deborah B. Rodes, Anna Nazarenko, Ravinder Kodela, Khosrow Kashfi Jul 2015

Nitric Oxide-Releasing Aspirin Suppresses Nf-Κb Signaling In Estrogen Receptor Negative Breast Cancer Cells In Vitro And In Vivo, Niharika Nath, Mitali Chattopadhyay, Deborah B. Rodes, Anna Nazarenko, Ravinder Kodela, Khosrow Kashfi

Publications and Research

Estrogen receptor negative (ER(−)) breast cancer is aggressive, responds poorly to current treatments and has a poor prognosis. The NF-κB signaling pathway is implicated in ER(−) tumorigenesis. Aspirin (ASA) is chemopreventive against ER(+) but not for ER(−) breast cancers. Nitric oxide-releasing aspirin (NO-ASA) is a safer ASA where ASA is linked to an NO-releasing moiety through a spacer. In vitro, we investigated anti-proliferation effects of NO-ASA (para- and meta-isomers) against ER(−) breast cancer cells MDA-MB-231 and SK-BR-23, effects on NF-κB signaling, and reactive oxygen species by standard techniques. In vivo, effects of NO-ASA were evaluated in a mouse xenograft model …


Loss Of Thiol Repair Systems In Human Cataractous Lenses, Min Wei, Kui-Yi Xing, Yin-Chuan Fan, Teodosio Libondi, Marjorie F. Lou Dec 2014

Loss Of Thiol Repair Systems In Human Cataractous Lenses, Min Wei, Kui-Yi Xing, Yin-Chuan Fan, Teodosio Libondi, Marjorie F. Lou

School of Veterinary and Biomedical Sciences: Faculty Publications

PURPOSE. The purpose of this study was to investigate the thiol repair systems of thioltransferase (TTase) and thioredoxin (Trx) and oxidation-damaged proteins in human cataractous lenses.

METHODS. Cataractous lenses in humans (57–85 years of age) were classified into cortical, nuclear, mixed, mature, and hypermature cataract types by using a lens opacity classification system, and were obtained by extracapsular cataract extraction (ECCE) procedure. Cortical and nuclear cataracts were grouped by decreasing order of visual acuity into optical chart reading (R), counting fingers (CF), hand motion (HM), and light perception (LP). ECCE lens homogenate was analyzed for glutathione (GSH) level and enzyme …


Staphylococcal Response To Oxidative Stress, Rosmarie Gaupp, Nagender Ledala, Greg A. Somerville Jan 2012

Staphylococcal Response To Oxidative Stress, Rosmarie Gaupp, Nagender Ledala, Greg A. Somerville

School of Veterinary and Biomedical Sciences: Faculty Publications

Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous osidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, …


Hydroxyl Radical Is Produced Via The Fenton Reaction In Submitochondrial Particles Under Oxidative Stress: Implications For Diseases Associated With Iron Accumulation, Carin Thomas, Melissa M. Mackey, Amy A. Diaz, David P. Cox Jan 2009

Hydroxyl Radical Is Produced Via The Fenton Reaction In Submitochondrial Particles Under Oxidative Stress: Implications For Diseases Associated With Iron Accumulation, Carin Thomas, Melissa M. Mackey, Amy A. Diaz, David P. Cox

All Faculty Scholarship for the College of the Sciences

Mitochondrial dysfunction and reactive oxygen species (ROS) are often implicated in diseases involving oxidative stress and elevated iron. As mitochondria produce ATP by oxidative phosphorylation, ROS by-products are generated from the electron transport chain. Although superoxide and hydrogen peroxide have been thoroughly investigated, little evidence documents hydroxyl radical (HO•) production in mitochondria. In order to determine whether HO• is generated under oxidative stress conditions by a Fenton-type mechanism, bovine heart submitochondrial particles were examined for HO• in the presence and absence of iron ligands, antioxidant enzymes and HO• scavengers. HO• was measured as 2,3- and 2,5-dihydroxybenzoic acid (DHBA), using HPLC …