Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Medicine and Health Sciences

Genetic Risk Factors For Neurodevelopmental Disorders: Insights From Hipsc-Cerebral Organoids, Michelle L. Wegscheid Dec 2021

Genetic Risk Factors For Neurodevelopmental Disorders: Insights From Hipsc-Cerebral Organoids, Michelle L. Wegscheid

Arts & Sciences Electronic Theses and Dissertations

Neurofibromatosis type 1 (NF1) is a common neurodevelopmental disorder (NDD) characterized by remarkable phenotypic variability, where affected children manifest a spectrum of central nervous system (CNS) abnormalities, including brain tumors, impairments in attention, behavior, learning disabilities, and an increased incidence of autism spectrum disorder (ASD). A significant barrier to the implementation of precision medicine strategies for children with NF1 is a lack of prognostic risk factors to guide clinical management. However, emerging population-based genotype-phenotype association studies have suggested that the germline NF1 gene mutation may represent one clinically actionable risk factor for NF1-associated neurodevelopmental abnormalities. As a critical step in …


Exploring Β-Cell Function And Heterogeneity In Obese Sm/J Mice, Mario Alejandro Miranda Aug 2021

Exploring Β-Cell Function And Heterogeneity In Obese Sm/J Mice, Mario Alejandro Miranda

Arts & Sciences Electronic Theses and Dissertations

Pancreatic β-cells perform glucose-stimulated insulin secretion, a process required to maintain systemic glucose homeostasis. Obesity promotes glycemic and inflammatory stress, causing β-cell death and dysfunction, resulting in diabetes. Efforts to improve β-cell function in obesity have been hampered by observations that β-cells are highly heterogeneous, varying in morphology, function, and gene expression. There is great need to understand the breadth of β-cell heterogeneity in health and obesity to improve diabetic therapies.High fat-fed SM/J mice spontaneously transition from hyperglycemic-obese to normoglycemic-obese with age, providing a unique opportunity to study β-cell adaptation. Here, we show that as they resolve hyperglycemia, obese SM/J …


Exploring The Intrinsic And Extrinsic Factors That Regulate Breast Cancer Cell Dormancy, Qihao Ren Aug 2021

Exploring The Intrinsic And Extrinsic Factors That Regulate Breast Cancer Cell Dormancy, Qihao Ren

Arts & Sciences Electronic Theses and Dissertations

Breast cancer can recur in patients months to decades after initial diagnosis and treatment. There is mounting evidence that dormant breast disseminated tumor cells (DTCs) exist in distant organs, whose reactivation results in cancer recurrence. However, the mechanisms that control tumor cell dormancy remain poorly understood, making it difficult to predict which patients will recur and develop cancer recurrence. Unfortunately, the extreme rarity of dormant DTCs has been the major obstacle to their study. To overcome this challenge, we developed an efficient system to isolate and study rare dormant tumor cells from metastatic organs. Using this system and single cell …


Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell Aug 2021

Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell

Arts & Sciences Electronic Theses and Dissertations

The tumor suppressor TP53 (p53) is the most frequently mutated gene in cancer and among the most mutated genes in brain cancer. Functionally, p53 is a transcription factor that, when activated by an array of stress stimuli, regulates a complex transcriptional program that contributes to a variety of antiproliferative pathways. The loss of p53 function (LOF), either through mutation, deletion, or inhibition by alterations in the proteins that regulate p53, removes an essential barrier to the unfettered proliferation and genomic instability that drive transformation. Unlike most tumor suppressors, many p53 mutations are missense mutations that lead to stable expression of …


Metabolic Control And Immune Barriers Of Hematopoietic Stem Cells, Hannah Pizzato Aug 2021

Metabolic Control And Immune Barriers Of Hematopoietic Stem Cells, Hannah Pizzato

Arts & Sciences Electronic Theses and Dissertations

Hematopoietic stem cells (HSCs) have the unique ability to self-renew for life, to differentiate into mature blood lineages, and to readily engraft upon intravenous transplantation. As such, they are the only types of stem cells in routine clinical use. Understanding HSCs and hematopoietic development can provide many lessons for other types of stem cells as they near clinical utility. Through bone marrow transplantation, it was discovered that cells exist with regenerative potential. This led to the search to purify these cells and to determine the function of other hematopoietic cells. By isolating and transplanting cells expressing different combinations of surface …


Uncovering A Myc-Driven Tumor-Suppressive Program In Proliferating Lymphocytes, Elena Tonc Aug 2021

Uncovering A Myc-Driven Tumor-Suppressive Program In Proliferating Lymphocytes, Elena Tonc

Arts & Sciences Electronic Theses and Dissertations

Rapid cell proliferation is a hallmark feature of adaptive immune cells lymphocytes. It is essential for the establishment of diverse antigen receptor repertoires and amplification of antigen-specific immune responses. While such proliferation is beneficial for host protection from infections and cancers, it inevitably elevates the risk of oncogenic transformation. In developing and germinal center B lymphocytes, the risk is further increased by endogenous, genomic insults due to antigen receptor rearrangements and somatic mutations, with which expression of the proto-oncogene c-MYC is closely associated. Nonetheless, frequencies of cancers originated from B lymphocytes are relatively low, suggesting that they are protected from …


Transcriptional Control Of Dendritic Cell Function And Development, David Alexander Anderson Iii May 2021

Transcriptional Control Of Dendritic Cell Function And Development, David Alexander Anderson Iii

Arts & Sciences Electronic Theses and Dissertations

Dendritic cells (DCs) are innate immune cells of the myeloid lineage that are specialized at pathogen recognition, cytokine production, and antigen presentation. Their functions and developmental pathways are largely conserved between mice and humans and mice. The DC lineage is composed of two major subsets, known as plasmacytoid DCs (pDCs) and classical DCs (cDCs). Research conducted to date suggests that the function of pDCs, limited to viral antigen recognition and type I interferon production, can be compensated by other immune cell lineages. On the other hand, there is a consensus that diversified subsets cDCs in mice and humans are essential …


Homeostatic T Cell Receptor Interactions With Self-Peptide Tune Cd4+ T Cell Function, Juliet Marie Bartleson Jan 2021

Homeostatic T Cell Receptor Interactions With Self-Peptide Tune Cd4+ T Cell Function, Juliet Marie Bartleson

Arts & Sciences Electronic Theses and Dissertations

Homeostatic T Cell Receptor Interactions with Self-Peptide Tune CD4+ T Cell Function

by

Juliet Marie Bartleson

Doctor of Philosophy in Biology and Biomedical Sciences

Immunology

Washington University in St. Louis, 2021

Professor Paul M. Allen, Chair

Mature CD4+ T cells circulate throughout peripheral secondary lymphoid organs using their T cell receptor (TCR) to surveil peptide presented on major histocompatibility complex class II molecules (pMHC) in search of cognate, antigenic peptide. In the absence of an immune challenge, however, the TCR is continuously interacting with self-pMHC, which induces a relatively weak TCR signal known as tonic signaling. These homeostatic TCR:self-pMHC interactions …


Contribution Of Tgf-B Signaling To The Pathogenesis Of Myeloproliferative Neoplasms, Juo-Chin Yao Jan 2021

Contribution Of Tgf-B Signaling To The Pathogenesis Of Myeloproliferative Neoplasms, Juo-Chin Yao

Arts & Sciences Electronic Theses and Dissertations

TGF-b expression is increased in most cases of myeloproliferative neoplasms (MPNs); however, its contribution to disease pathogenesis is not well understood. Here, we explore two specific hypotheses. First, we hypothesize that increased TGF-b signaling in mesenchymal stromal cells contributes to the development of myelofibrosis. Second, we hypothesize that Jak2 mutated hematopoietic stem cells (HSCs) are resistant to the growth suppressive effect of TGF-b, conferring a fitness advantage that contributes to their expansion in MPNs and clonal hematopoiesis. To test the first hypothesis, we abrogated TGF-b signaling in mesenchymal stem/progenitor cells by deleting Tgfbr2 using a doxycycline-repressible Osterix-Cre transgene (Osx-Cre), which …


Targeting The Phgdh-Mtor Metabolic Axis In Osteosarcoma, Richa Rathore Jan 2021

Targeting The Phgdh-Mtor Metabolic Axis In Osteosarcoma, Richa Rathore

Arts & Sciences Electronic Theses and Dissertations

Altering cellular energy metabolism has been highlighted as one of the emerging hallmarks of cancer. The reprogramming of bioenergetic pathways towards enhanced glycolysis, rather than the mitochondrial oxidative phosphorylation indicative of normal cells, results in increased biomass production and is associated with the activation of various oncogenes. The increased or decreased expression of key metabolic enzymes has been identified as a potential family of biomarkers that could serve as the targets for novel metabolic-based therapies in cancer.

The serine, glycine, and one-carbon (SGOC) metabolism pathway consists of a series of enzymes and metabolites that drive protein and lipid production, enhanced …