Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

University of Kentucky

Series

2016

Cell Line

Articles 1 - 1 of 1

Full-Text Articles in Medicine and Health Sciences

Gap Junction Mediated Mirna Intercellular Transfer And Gene Regulation: A Novel Mechanism For Intercellular Genetic Communication, Liang Zong, Yan Zhu, Ruqiang Liang, Hong-Bo Zhao Jan 2016

Gap Junction Mediated Mirna Intercellular Transfer And Gene Regulation: A Novel Mechanism For Intercellular Genetic Communication, Liang Zong, Yan Zhu, Ruqiang Liang, Hong-Bo Zhao

Otolaryngology--Head & Neck Surgery Faculty Publications

Intercellular genetic communication is an essential requirement for coordination of cell proliferation and differentiation and has an important role in many cellular processes. Gap junction channels possess large pore allowing passage of ions and small molecules between cells. MicroRNAs (miRNAs) are small regulatory RNAs that can regulate gene expression broadly. Here, we report that miRNAs can pass through gap junction channels in a connexin-dependent manner. Connexin43 (Cx43) had higher permeability, whereas Cx30 showed little permeability to miRNAs. In the tested connexin cell lines, the permeability to miRNAs demonstrated: Cx43 > Cx26/30 > Cx26 > Cx31 > Cx30 = Cx-null. However, consistent with a uniform …