Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

The Search For High-Impact Diagnostic And Management Tools For Low-And Middle-Income Countries: A Self-Powered Low-Cost Blood Pressure Measurement Device Powered By A Solid-State Vibration Energy Harvester, Onur Bilgen, John G. Kenerson, Muge Akpinar-Elci, Rebecca Hattery, Lisbet M. Hanson Aug 2015

The Search For High-Impact Diagnostic And Management Tools For Low-And Middle-Income Countries: A Self-Powered Low-Cost Blood Pressure Measurement Device Powered By A Solid-State Vibration Energy Harvester, Onur Bilgen, John G. Kenerson, Muge Akpinar-Elci, Rebecca Hattery, Lisbet M. Hanson

Mechanical & Aerospace Engineering Faculty Publications

The World Health Organization has established recommendations for blood pressure measurement devices for use in low-resource venues, setting the triple A expectations of Accuracy, Affordability, and Availability. Because of issues related to training and assessment of proficiency, the pendulum has swung away from manual blood pressure devices and auscultatory techniques towards automatic oscillometric devices. As a result of power challenges in the developing world, there has also been a push towards semiautomatic devices that are not dependent on external power sources or batteries. Beyond solar solutions, disruptive technology related to solid-state vibrational energy harvesting may be the next iterative solution …


Ablation Of Myocardial Tissue With Nanosecond Pulsed Electric Fields, Fei Xie, Frency Varghese, Andrei G. Pakhomov, Iurii Semenov, Shu Xiao, Jonathan Philpott, Christian Zemlin Jan 2015

Ablation Of Myocardial Tissue With Nanosecond Pulsed Electric Fields, Fei Xie, Frency Varghese, Andrei G. Pakhomov, Iurii Semenov, Shu Xiao, Jonathan Philpott, Christian Zemlin

Bioelectrics Publications

Background

Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations.

Methods

We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2–4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5–20 kV/cm, 350 ns duration, …